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1 INTRODUCTION  
 
 
Inner speech, also known as imagined speech, refers to the silent, mental monologue individuals engage 
in without physically articulating words. In essence,  it is an internal monologue associated  with various 
cognitive processes (e.g. language planning, analyzing, and problem solving) triggered in almost any 
everyday activity, whether that is preparing  for a challenging conversation, strategizing how to address a 
potential customer,  or practicing responses to interview questions. Unlike spoken communication, inner 
speech does not involve any movement of the articulators. Instead, it relies on the voluntary imagination 
of speech, where an individual can mentally simulate the act of speaking without vocalizing or engaging 
any part of their vocal tract. Therefore, lack of articulators’ engagement does not hinder inner thinking, 
provided that the cognitive function of the speaker remains intact.   

The ability to decode and externalize human thought, commonly referred to as “mind reading” 
(i.e. the interpretation of internally-generated speech) has been a long-held ambition of Brain-Computer 
Interfaces (BCIs). Imagined speech has recently been studied as an intuitive paradigm (Herff et al., 2017), 
where the neural responses that are generated by imagining pronunciation, without the involvement of 
the articulators, are registered and subsequently decoded.  This paradigm is particularly suitable for 
building communication systems; its performance may be lacking compared to other BCI paradigms, yet 
it has multiclass scalability, which allows building extensible BCI systems. BCIs are systems designed to 
translate neural activity into commands that control external devices, initially developed to assist 
individuals who have lost voluntary muscle control in tasks such as operating wheelchairs or robotic arms.  
In recent years, BCIs have expanded into various fields, including interactive applications in gaming and 
neuroergonomics. BCIs utilize different neuroimaging  modalities, with electroencephalography (EEG) 
emerging as the preferred  choice, as EEG stands out as an non-invasive and low-cost method compared 
to alternatives like fMRI and fNIRS. While it may offer lower spatial resolution, EEG excels in capturing 
rapid brain activity changes, providing high temporal resolution crucial for real-time applications.   

Over the years, the development of EEG-based BCIs for inner speech decoding has been based on 
the systematic exploration of diverse imagined speech elements, including phonemes, syllables, and 
lexical items. Consequently, the corresponding classification task requires the interpretation of the brain’s 
neural responses during the processing of these elements. The majority of the first inner decoding studies 
were usually confined to binary classification tasks, with the scope of differentiating between different 
types of speech elements, such as consonants and vowels, nasals and bilabials, or phonemes and words. 
Recently, research progressed to focus on multiclass classification issues, with the objective to distinguish 
among a wide variety of words or to identify specific phonemes from a larger set.   

The variety of speech components investigated reflects the complexity of inner speech, as it 
encompasses not only individual speech elements but also more structured linguistic phenomena. By 
examining these different speech elements, researchers aim to refine and enhance the accuracy and 
scalability of BCI systems designed to interpret the brain’s neural signals, with the ultimate goal being the 
formulation of a universal lexicon. Formulating such a lexicon requires the development of decoding 
models that should be able to handle multiclass data and differentiate them efficiently in (near) real-time 
to enable seamless communication and control for users.   

Similarly to other signal processing domains, the field of decoding inner speech from EEG signals 
has made significant advancements in the last years due to the shift towards deep learning techniques in 
data processing. In more detail, deep learning techniques such as convolutional neural networks (CNNs) 



 

Page | 8 

and recurrent neural networks (RNNs) have demonstrated significant advantages in capturing temporal 
and spatial dependencies within EEG signals, surpassing traditional machine learning approaches in both 
accuracy and performance. In comparison to traditional machine learning methods, which have often 
struggled with the complexity of inner speech signals, deep learning models are better equipped to handle 
the variability and subtlety inherent in this task. As the field progresses, deep learning is expected to play 
a central role in advancing the accuracy, efficiency, and practical application of inner speech-based BCIs.   

As research in this area continues to advance, deep learning is estimated to play a pivotal role 
(see Figure 1) in improving the practical application and deployment of inner speech-based BCIs, offering 
substantial benefits in the accuracy of inner speech interpretation and their incorporation to real-life 
applications. In this direction, the present report discusses in detail the deep learning inner speech 
decoding approaches available during the past decade.   

 
Figure 1. Number of publications per year based on Machine Learning (ML) and Deep Learning (DL) for EEG-based 

inner speech decoding. 
 

The remainder of this document as follows: Section 2 presents the methodology employed; 
Section 3 presents the relevant datasets currently available; Section 4 describes the preprocessing steps 
for EEG data analysis; Section 5 details deep learning; and lastly, Section 6 concludes the report identifying 
the gaps that persist in inner speech research, which BINGO will address. 
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2 M ETHO DOLOGY FOR 
L ITERATURE SEARCH  
 
We conducted the literature review for the present report with the aim to identify peer-reviewed research 
papers on the classification of inner speech using EEG with added attention to deep learning 
methodologies. The following steps outline the process followed to ensure a comprehensive and 
systematic search of relevant literature. 
 

2 . 1  S E A R C H  D A T E  A N D  P L A T F O R M S  
The search for relevant articles was conducted on February 5, 2024. The primary platform used for this 
search was Google Scholar, which aggregates content from a wide array of reputable academic sources. 
Specifically, the search included journals and conference papers available through IEEE Xplore, MDPI, 
ScienceDirect, IOPscience, Frontiers and SpringerLink. To capture relevant research, we used a 
combination of the following keywords: EEG, inner speech, covert speech, electroencephalography, 
classification and deep learning. 
 

2 . 2  I N C L U S I O N  C R I T E R I A  
The following inclusion criteria were considered for the present report:  
 

• Period: The search confined to articles published between 2014 and 2024.   
• Language: Only publications written in English considered.   
• Peer-Reviewed Articles: Only peer-reviewed journal articles and conference papers considered to 

ensure the quality and reliability of the findings.  
• EEG-Related Studies: Articles that specifically involved EEG data.   
• Deep Learning Focus: Review studies employing deep learning techniques for the classification of 

inner speech.   
 

The search process resulted in 30 papers focusing on deep learning and fitting all criteria which were 
considered for the literature review. We organize the review as follows: Section 3 discusses the publicly 
available datasets utilized in this field, detailing the essential characteristics and descriptions of each 
dataset. Section 4 outlines the preprocessing steps employed by researchers, including signal filtering, 
channel selection and feature extraction techniques. Section 5 provides an in-depth analysis of the deep 
learning architectures that have emerged in recent years, presenting findings on the trends and 
performance of the models used in inner speech classification. Lastly, Section 6 concludes the review 
underlying the main gaps in the literature. 
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3 DATASETS  
 
 
In this section, we describe the open databases referenced in the literature. Each database consists of 
multiple tokens, each pronounced silently by the participants while their brain activity is monitored. The 
following inner speech tokens have been studied in the literature: phonemes (e.g. consonants and 
vowels), syllables, words and phrases. Note that some studies further examine features of lexical items 
such as word length or set of phrases for multiclass classification (Lee et al., 2020). Classification tasks are 
categorized in binary and multiclass classification.  Binary classification includes, recognizing phonological 
categories, differentiating between short and longer words or classifying between token pairs. 
Meanwhile, multiclass is performed on a set of tokens and can include sets of words, syllables, or a 
combination of both. Bellow we describe each dataset:  
  
KaraOne – Zhao & Rudzicz (2015) 
 
The KaraOne dataset (Zhao and Rudzicz, 2015), developed at the Toronto Rehabilitation Institute, is 
designed for inner speech decoding using EEG signals. It includes data from 14 participants (4 females and 
10 males), who were administered trials involving seven phonemic/syllabic tokens (/iy/, /uw/, /piy/, /tiy/, 
/diy/, /m/, /n/) and four words (pat, pot, knew,  gnaw). Each token was repeated 12 times per subject, 
resulting in a total of 132 trials per participant. EEG signals were recorded using a 64-channel cap, 
following the 10-20 electrode placement system, with a 1 kHz sampling rate. The acquisition protocol for 
each trial includes four states: a 5-second rest period, a 2-second stimulus presentation, a 5-second 
speech imagery phase, and a speaking state in which the participant spoke the token aloud, with both 
audio and facial features recorded. The dataset has been utilized in multiple binary classification tasks, 
including the detection of consonants, bilabials, nasals, single vowels, and the classification of words vs. 
phonemes (Macías-Macías et al., 2023; Panachakel & Ramakrishnan, 2021). Additionally, Datta & 
Boulgouris (2021) explored the classification of the grammatical class of tokens. Bakhshali et al. (2020) 
employed the dataset to classify all different pairs of the four spoken words. Research on multiclass 
classification has also been conducted utilizing all 11 classes (Hernandez-Galvan et al., 2022; Mini et al., 
2021; Panachakel et al., 2019). Due to the limited number of trials per participant and class, the dataset 
may pose challenges for subject-dependent classification tasks using deep neural networks. This 
constraint suggests that approaches such as few-shot learning could be particularly well suited to address 
the issue, as they are designed to perform effectively with limited training data.   
 
Nguyen et al. (2017)  
 
The study involved 15 healthy participants (4 females and 11 males) performing imagined speech tasks. 
The tasks included imagining short words (’in’, ’out’, ’up’), long words (’cooperate’, ’independent’), and 
vowels (/a/, /i/, /u/). Each subject participated in sessions where they silently pronounced these prompts 
following 4 visual cues on a computer monitor. Each session consisted of 100 trials per prompt, with a 
rhythmic beep to guide the timing of the imagined speech.  EEG signals were recorded using a 64-
electrode system, sampled at 1000 Hz and downsampled to 256 Hz. The data underwent preprocessing 
with a bandpass filter (8-70 Hz), a notch filter at 60 Hz, and artifact removal for eye movements. In recent 
work, the dataset was shown to be suitable for both binary and multiclass classification tasks such as 
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classification between two long words (Biswas & Sinha, 2022; Hernandez-Galvan et al., 2023; Jiménez-
Guarneros & Gómez-Gil, 2021; Kamble et al., 2023) or of short vs. long words (Hernandez-Galvan et al., 
2023; Kamble et al., 2023). Furthermore, multiclass classification has been performed on 8 classes 
(Hernandez-Galvan et al., 2023) as well as between three short words and three vowels (Hernandez-
Galvan et al., 2023; Kamble et al., 2023).  

  
Coretto et al. (2017)  
 
The dataset includes EEG recordings from participants performing imagined and pronounced speech 
tasks. 15 participants (7 females and 8 males) were involved in the study, each undergoing a single 
recording session to reduce intra-subject variance. The dataset consists of  two main classes of tokens: 
Spanish vowels (/a/, /e/, /i/, /o/, /u/) and  command words (‘arriba’ “up”, ‘abajo “down”, ‘derecha’ “right”,  
‘izquierda’ “left”, ‘adelante’ “forward”, and ‘atras’ “backward”).  Each participant performed two types of 
tasks: imagining and pronouncing the tokens. For each item, 50 trials were conducted, with 40 trials 
dedicated to imagined speech and 10 to pronounced speech. EEG signals were recorded using an 18-
channel system, with electrodes positioned according to the 10-20 international system. The data were 
collected at a sampling rate of 1024 Hz. During preprocessing, a band-pass filter between 2 Hz and 40 Hz 
was applied to the EEG signals to eliminate low frequency noise and high frequency artifacts. Additionally, 
a fourth-order Butterworth low-pass filter with a cutoff frequency of 10 kHz was used for voice signals. 
Cooney et al. (2019) further examined the classification of all word-pairs included in the set. Additionally, 
the multiclass problem has also been explored using separately the available words (Lee et al., 2020; 
Simistira Liwicki et al., 2022), the vowels (Mahapatra & Bhuyan, 2022a; Sarmiento et al., 2021; Simistira 
Liwicki et al., 2022) and all the 11 classes together (Mahapatra & Bhuyan, 2022b).   
 
Torres-García et al. (2012) 
  
The dataset is composed of EEG signals collected from 27 native Spanish-speaking participants, recorded 
using a 14 electrode headset with a sampling frequency of 128 Hz. The data are filtered using a finite 
impulse response (FIR) band-pass filter at the range 4 to 25 Hz.  Each subject performed 33 inner speech 
trials of each one of the 5 Spanish words ‘arriba’, ‘abajo’, ‘izquierda’, ‘derecha’, ‘seleccionar’ - “up”, 
“down”, “left”, “right”, “select” respectively. The classification of these 5 words has been explored by 
Jiménez-Guarneros & Gómez-Gil (2021) and Torres-García et al. (2016).  García-Salinas et al. (2019) 
initially used the data of 4 classes and with transfer learning experimented on increasing the vocabulary 
of the model by adding the remaining class to the model.   
 
Thinking out loud – Nieto et al. (2022) 
 
In this study, 10 healthy participants (4 females and 6 males) engaged in an experiment involving 4 Spanish 
words:  ‘arriba’ “up”, ‘abajo’ “down”, ‘derecha’ “right”, and ‘izquierda’ “left”.  Each participant performed 
50-60 trials for each word. EEG data were collected using a 128-channel setup with a sampling rate of 
1024 Hz. The EEG signals were subsequently preprocessed and filtered within a frequency range of 0.5 Hz 
to 100 Hz, with a Notch filter applied at 50 Hz to eliminate power line noise. The data were then 
downsampled to a final sampling rate of 254 Hz, and Independent Component Analysis (ICA) was 
employed for artifact removal.  This dataset is particularly suitable for 4-way classification of the words; 
additionally, the extensive number of trials per participant facilitates the development of subject-
dependent models using deep learning techniques (van den Berg et al., 2021).  
 
Sarmiento et al. (2021) 
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The dataset comprises EEG recordings from 50 native speakers of Spanish (20 females and 30 males). The 
experiment involved imagining five vowels (/a/, /e/, /i/, /o/, /u/), with each vowel constituting a separate 
class.  For each vowel, participants completed 25 trials, resulting in 125 trials per participant. EEG data 
was collected using a headset with 14 electrodes with a sampling frequency of 128 Hz. The researchers 
also explored the classification of the data using convolutional neural networks.   
 
LaRocco et al.  (2023)  
 
The dataset includes EEG recordings from 16 participants (4 females and 12 males). While most 
participants were native speakers of English, 5 were non-native speakers but demonstrated functional 
proficiency in English. The study involved participants imagining the pronunciation of 44 different 
phonemes presented through a combination of visual and auditory stimuli to mitigate distractions. Each 
participant underwent three 40-minute sessions, each involving five trials per phoneme, resulting in 15 
trials per phoneme across all sessions. Data acquisition was performed using a headset capturing signals 
from 16 EEG channels at a sampling rate of 250 Hz. The EEG channels followed the 10–20 International 
System.  The dataset has been used for a one-versus-all phoneme-based classification and it is also 
suitable for research on multiclass based models due to its large number of classes.   
 
Da Salla et al.  (2009; 2012) 
 
Three right-handed fluent speakers of English with no neurological disorders (1 female and 3 males) 
participated in the study. The participants performed three tasks, imagined mouth opening and 
vocalization for vowel  /a/, imagined lip rounding and vocalization for vowel /u/, and a control  task (rest 
state) with 50 trials per task (150 trials total per subject). Continuous EEG was recorded using a system 
with 64+8 electrodes at 2048 Hz, downsampled to 256 Hz, and electrodes were placed according to the  6  
10-20 system. Data were visually inspected, and trials with artifacts were marked for rejection and 
repeated if necessary. Preprocessing involved  zero-phase bandpass filtering (1–45 Hz) and extracting 3-
second epochs  (1 second pre-stimulus, 2 seconds stimulus), resulting in 150 epochs per  subject.   
 
ZuCo (Hollenstein et al., 2018; Hollenstein et al., 2019)  
 
The ZuCo dataset comprises EEG and eye-tracking data from 12 right-handed native speakers of English 
(5 females and 7 males). The dataset includes sentences from the Stanford Sentiment Treebank – 400 
sentences: 123 neutral, 137 negative, 140 positive – and the Wikipedia relation extraction corpus – 650 
sentences for normal reading and 407 for task-specific reading with partial overlap.  Participants 
performed three reading tasks: (a) normal reading of sentiment-labeled sentences, with control questions 
about movie quality; (b) reading sentences with semantic relations, followed by multiple-choice 
questions; and (c) task-specific reading to identify specific relation types – e.g., award, education, 
employer). Sentences were presented on a computer screen in blocks, with text formatted for natural 
reading. Participants used a control pad to navigate the sentences at their own pace. EEG data were 
recorded using  a 128-channel system at 500 Hz. Data preprocessing included artifact  removal, band-pass 
filtering (0.1-100 Hz), and impedance checks every 30  minutes. The study provides insights into natural 
reading processes and the neural correlates of semantic and sentiment processing. The ZuCo dataset’s 
extensive vocabulary and diverse corpus make it suitable for training models aimed at open EEG-to-text 
decoding, as demonstrated by Wang & Ji (2022) and Duan et al. (2023).  
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4 PRE PROCE SS ING  
 
In this section, we briefly go through the key preprocessing techniques are used in the literature. 
 

4 . 1  F I L T E R I N G  
 
Filtering of the signals is one of the most important steps of preprocessing.  Band pass filters are used for 
noise reduction in different frequency bands. Most popular bands that are used for EEG signals are 
between 0.5-50Hz (Bisla & Anand, 2023; Macías-Macías et al., 2023;Tiwari et al., 2024; Zheng et al., 2023) 
while there are some previous works that expand their  filtering and keep frequencies up to 128Hz 
(Abdulghani et al., 2023; LaRocco et al., 2023; Pawar & Dhage, 2023). Each of the main frequency bands 
that are relevant to EEG are associated with specific mental tasks. Hernandez-Galvan et al. (2023) 
performed connectivity analysis on EEG data and concluded that the beta band is the most efficient in 
classifying mental tasks. Finally, the 50 Hz frequency called powerline frequency is usually filtered out, as 
it contains noise that interferes with the data quality, using a notch filter at 50 Hz (Bakhshali et al., 2022; 
Tiwari et al., 2024).  
 

4 . 2  A R T I F A C T  R E M O V A L  
 
The first step in signal preprocessing is removing noise and artifacts. Various methods are employed to 
achieve this, with blind source separation (Bisla & Anand, 2023) and Wavelet Enhanced Independent 
Component Analysis (WICA) (Mini et al., 2021) being among the most effective techniques. Blind source 
separation works by decomposing the EEG signals into statistically independent components, allowing for 
the identification and removal of artifacts such as eye blinks and muscle movements. WICA combines 
wavelet transformation with ICA, leveraging the strengths of both methods to enhance the separation of 
artifacts from neural signals. This dual approach helps in effectively isolating and eliminating non-neural 
signals, thereby significantly improving the clarity and quality of the EEG data. Other basic techniques such 
as normalization, average re-referencing of the data and ICA have also been used with the aim to increase 
the performance of the models (Abdulghani et al., 2023; Kamble et al., 2023; Retnapandian & Anandan, 
2023). 
 

4 . 3  C H A N N E L  S E L E C T I O N  
 
Inner speech involves specific brain regions and neural mechanisms that are typically different from the 
ones involved in overt speech, as inner speech is associated primarily with brain areas involved in speech 
perception (Alderson-Day et al., 2015; Alderson-Day et al., 2016; McGuire et al., 1996 among others). The 
goal in channel selection is to identify and focus on the EEG channels that capture the most relevant neural 
activity associated with inner speech, thus enhancing the performance of the BCI. The following brain 
regions are consistently implicated in inner speech processing:    



 

Page | 14 

• Broca’s area located in the left frontal lobe is associated with speech production and EEG channels 
over the left frontal regions are often selected to capture activity in the area.   

• Prefrontal cortex is involved in executive functions and working memory and helps in formulating 
inner speech.   

• Wernicke’s area is located in the left superior temporal gyrus and is involved in language 
comprehension.   

• Parietal lobe integrates sensory information and is involved in spatial processing and attention, 
which are relevant to inner speech. 

 

4 . 4  F E A T U R E  E X T R A C T I O N  
 
Feature extraction plays a pivotal role in the analysis of EEG signals for inner speech classification, as it 
aims to capture relevant patterns and characteristics from the data. Earlier research has explored various 
techniques to extract discriminative features from EEG signals, catering to different aspects of neural 
activity. Statistical features have been widely utilized (Macías-Macías et al., 2023; Pawar & Dhage, 2023; 
Zheng et al., 2023), including measures such as mean, variance, skewness, and kurtosis, which provide 
insights into the distribution and dynamics of the EEG signals. Riemannian features offer an alternative 
approach, leveraging the geometry of covariance matrices to represent the intrinsic structure of EEG data 
(Nguyen et al., 2017; Bakhshali et al., 2022). Wavelet-based methods (Abdulghani et al., 2023; Mahapatra 
& Bhuyan, 2023) exploit the multi-resolution nature of wavelet transforms to extract time-frequency 
features, capturing both temporal and spectral information from EEG signals. Additionally, spatiotemporal 
features (LaRocco et al., 2023) consider the spatial distribution and temporal dynamics of EEG signals, 
offering a comprehensive representation of neural activity across different brain regions. 
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5 DEEP LEARNING  
 
Deep Learning, an advanced subdomain of machine learning inspired by the neural mechanisms of the 
human brain, has emerged as a pivotal framework for identifying complex structures within high-
dimensional data. Through the utilization of multilayered neural architectures, it systematically abstracts 
hierarchical representations from unstructured inputs, including acoustic signals and textual data, thereby 
enabling substantial advancements in domains necessitating sophisticated analytical capabilities (Zhang 
et al., 2022). This paradigm exhibits a high degree of adaptability, leveraging large-scale datasets to 
capture effectively contextual subtleties (Li & Wang, 2023). Its ability to process intricate patterns has 
facilitated transformative developments across a broad spectrum of disciplines, reinforcing its position as 
a fundamental component of contemporary artificial intelligence research (Devlin et al., 2021). 

This section presents deep learning architectures and relevant data based on 30 research articles 
discussing current trends in the field and models’ performance. 16 studies employ CNNs to classify inner 
speech; 5 studies employ RNNs with 2 of them examining both CNNs and RNNs for classification; lastly, 
11 studies incorporate various architectural types such as Multi-Layer Perceptrons (MLPs), siamese 
networks, capsule networks, shallow neural networks, and Large Language Models (LLMs). Note that 
other important characteristics other than the network type, are activation functions and optimization 
algorithm.  

5 . 1  C N N S  
  
CNNs are particularly favored for EEG analysis due to their efficacy in capturing spatial hierarchies in data, 
making them well suited for processing the complex patterns inherent in EEG signals. EEG signals are 
recorded from multiple electrodes placed across the scalp, creating a spatially structured dataset. CNNs 
use convolutional layers to focus on local spatial features, allowing the network to learn important 
patterns between neighboring electrodes. Multiple studies employ either standalone models or hybrid 
models paired with other methods, consistently achieving high accuracies in the field.  
 
Basic CNN open models  
CNN architectures typically consist of a series of convolutional and pooling layers followed by fully 
connected layers, effectively learning spatial features from the EEG data. These typical CNN 
representations have proven to be extremely effective for tackling complex problems. For EEG 
classification, a popular and effective CNN architecture is the EEGNet (Lawhern et al., 2021). EEGNet is 
particularly well-known for its lightweight and efficient architecture, specifically tailored for EEG-based 
applications. EEGNet employs depth-wise and separable convolutions, which significantly reduce the 
number of parameters while maintaining robust feature extraction capabilities.  Various studies have used 
EEGNet based classification for the task of inner speech decoding. Within this context, EEGNet was used 
by van den Berg et al. (2021) to discriminate among 4 words resulting in an average accuracy of 29.67%  
while the best subject reached as high as 34.50%, indicating that performance  is highly affected by 
individual differences and signal noise.  

DeepConvNet authors (Schirrmeister et al., 2017) aimed to develop CNN-based models 
specifically tailored to classify between EEG signals. The output of this study was two widely used distinct 
architectures named Deep ConvNet and Shallow ConvNet. The Deep ConvNet comprises of 4 
convolutional blocks aiming to extract the relevant features from the signals followed by a softmax 
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classification unit whereas Shallow ConvNet features a single convolutional layer followed by a temporal 
filter layer and is specifically tailored for decoding band power features. Cooney et al. (2020) have 
researched the effect of hyperparameters on such networks for imagined speech decoding. The EEGNet, 
Deep ConvNet and Shallow ConvNet models were tested with various hyperparameter configurations 
using nested Cross-Validation. The tests found a statistically significant the effect of various HP for DL 
models. These models are often referred to as benchmarks models in many studies.   

For inner speech recognition specifically, the iSpeech-CNN model introduced by Simistira Liwicki 
et al. (2022) employs consecutive 2D convolutional blocks with varying filter numbers, followed by a 
softmax layer for multiclass classification. This model achieved accuracies of 35.20% for five vowels and 
29.21% for six words, both significantly above chance. Furthermore, Nitta et al. (2023) tested five vowels 
using a network that consisted of serialized 2D convolutional layers followed by activation functions, 
dropout or fully connected layers. The model achieved on average 72.6% accuracy. Based on simple CNNs 
García-Salinas et al. (2023) introduced the ability for a pretrained CNN network to learn new previously 
unseen classes without it resulting in catastrophic forgetting. The newly introduced algorithm managed 
to maintain the total accuracy of the network even after introducing the new class, resulting in a stable 
model.  

  
Advanced works 
More advanced CNN architectures have been explored utilizing CNNs with more complex structures 
and/or aiming for a better understanding of  brain signal patterns. Li et al. (2021) explored the hybrid-
scale spatial-temporal dilated convolution network (HS-STDCN), which similarly to the EEGNet and 
DeepConvNet networks uses temporal and spatial convolution layers for extracting characteristics from 
the EEG signals. HS-STDCN’s difference is that the temporal convolution is done by a hybrid convolutional 
layer instead of a standard one, utilizing multiple kernel sizes to capture features on different scales. The 
main addition of this work is the use of a dilated convolution block post spatiotemporal features 
extraction. The dilated block allows the network to capture multi-scale context thus improving contextual 
understanding over larger scales. Li et al. (2021) trained and tested their method, on a 8-word vocabulary 
dataset, and compared the findings with common benchmark algorithms, including various machine 
learning classifiers as well as the EEGNet, with the proposed algorithm achieving an average accuracy of 
54.31%, significantly outperforming other methods.  

Staying on the unique architecture area of DL studies, Tiwari et al. (2024) employed multi-headed 
CNNs for solving the classification of five vowels with each head trained on different extracted features 
from the signals and each output passed into a last fully connected later for the final classification. A 
97.67% accuracy was reported, a measurable improvement over the 92.8% accuracy achieved by a 1D-
CNN model. A similar approach, but with a multi-channel CNN model, was employed by Datta & 
Boulgouris (2021) who classified the grammatical class (verb/noun) of eight silently spoken words. Each 
of the three CNN channels was trained with data from different electrodes resulting in an accuracy of 
85.7% even when the classified word was never used during training (Leave One Out validation). Similarly, 
Sarmiento et al. (2021), deployed an ensemble model to classify between 5 vowels. For each EEG input 
they trained 10 distinct CNNs in parallel, each corresponding to one of the possible vowel-pairs; the 10 
outputs were subsequently passed to a voting scheme function, which outputs the final prediction. The 
model predicted correct output at 85.66% when tested on their publicly available database (see Section 
3).   

The studies reported so far used solely EEG data to train a classifier and decode the participant’s 
inner speech. Meanwhile, Cooney et al. (2021) used EEG data along with fNIRS signals with two CNNs 
trained on each data type for feature extraction, and then both outputs were concatenated and used for 
classification. Classification tasks included (a) 4 different words and (b) 4 word-pairs – two-word phrases. 
The average accuracy of the bimodal model was 34.29% suggesting that such methods could help improve  
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the open problem of inner speech detection. Hybrid models have also achieved promising results; the 
plan is to use CNNs along with other DL models, to better capture the information hidden in the complex 
signals. In this research setting, four works appear to use such hybrid architectures in the field of inner 
speech classification and are presented bellow. Saha et al. (2019) used both the CNN architecture as well 
as LSTM, a popular type of RNN, in parallel in order to extract relevant features from the signals. Both of 
the outputs were concatenated and passed as a single input to a traditional machine learning classifier for 
classification.  This hybrid model was tested in multiple binary classification problems using the KaraOne 
dataset, noting significant improvements in classification over previous SoTA approaches.  

So far, the studies mentioned have tested their performance either on binary classification 
problems or on a vocabulary of 4-6 tokens (words  or vowels). A larger vocabulary size was taken into 
account by Vorontsova et al. (2021) with  participants instructed to pronounce 8 different words along 
with 1 pseudoword.  The proposed network consisted of a CNN-based architecture named ResNet, that is 
commonly used for image classification, followed by an RNN consisting of multiple GRUs. This new 
approach successfully differentiated between the 9 tokens with 85% accuracy showcasing strong 
potentials. Mahapatra & Bhuyan (2022b) attempted an even larger vocabulary size with 11 different 
classes including  both words and vowels. The researchers included the use of temporal convolutional 
networks (TCN) in the model’s pipeline, responsible for learning  temporal features. The TCN blocks are 
trained in parallel with CNN blocks and their outputs are taken into account for the final classification. An 
impressive accuracy of 96.49% was reported which is considerably higher compared to other models. In 
the interim, technology of transformers and self-attention become central in the field. Lee & Lee (2022) 
paired the EEGNet with a self-attention module for inner speech classification. A 13-class dataset (12 
words/phrases + rest) was used for testing the proposed classifier and the research resulted in a 35.07% 
accuracy. Concerning this review, this is the largest close-word vocabulary used for inner speech 
classification. 
 
 

5 . 2  R N N S  
 
The nature of EEG data being sequential with respect to time makes the use of RNNs appealing in their 
processing. RNNs are particularly effective for tasks where the temporal dynamics and context of data are 
important, such as time series prediction, language modeling, and sequence classification.  They are 
characterized by their ability to maintain a hidden state that captures information from previous time 
steps, which is then used to influence the processing of subsequent time steps. This makes them uniquely 
suited to handle data where the order of inputs is crucial.   

Those characteristics drove researchers to include RNNs in the task of inner speech classification 
from EEGs. Besides the aforementioned works where RNNs were used along with CNNs for decoding, 
there is research work utilizing RNN-only architectures. Abdulghani et al. (2023) used a popular type of 
RNN, the LSTM, for the classification of 4 words. The architecture consisted of 3 LSTM layers with dropout 
layers in between that were responsible for capturing the relevant information. Training the LSTM models, 
resulted in a 92.5% accuracy for the 4 words. In 5 vowels classification, Retnapandian & Anandan (2023) 
employed CNN training with EEG signals and tested the performance in all five popular frequency bands. 
The study reported a 88.9% accuracy for the classification of the 5 vowels with theta and beta bands 
achieving the highest accuracies. Addressing the challenge of limited availability of EEG signal data, 
Hernandez-Galvan et al. (2023) introduced a novel approach using few-shot learning with a prototypical 
network combined with RNNs for classification. The prototypical network was chosen for its effectiveness 
in learning from a small number of samples. RNNs are employed to extract features from the EEG signals, 
which are subsequently embedded and classified using the prototypical network algorithm. The study 
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evaluates the performance using both LSTM and GRU as RNN architectures, achieving accuracies of 
92.04% and 96% respectively. 
 

5 . 3  O T H E R  A R C H I T E C T U R E S  
 
In the literature, we also identify studies employing other architectures such as training an MLP for the 
purpose of inner speech classification. Sereshkeh et al. (2017) conducted research on ‘yes’ vs. ‘no’ vs. rest 
classification examining pair classification and 3-way classification. A multi-layer  perceptron with a single 
hidden layer was developed and trained with the EEG  data yielding a binary classification accuracy of yes’ 
vs. ‘no’ at 63.2%. The task of rest vs. covert speech trial had a higher accuracy that reached 75.7% while 
the 3-way classification surpassed the chance level with an accuracy of 54.1%. Additionally, Kiroy et al. 
(2022) aimed to solve a more complex problem where the proposed MLP network aimed to classify 
between 7 classes consisting of 6 mentally pronounced words plus the rest state of the participants; the 
trained ANN was evaluated with 33–40% accuracy on classifying all seven classes.  

Promising are also the results by Mini et al. (2021) who explored multiple feature extraction 
methods from the EEG signals and then used those features for training a MLP. Their 11-way classification 
task achieved 77.37% accuracy noting significant improvements over earlier studies and with a larger 
corpus. The same problem was challenged four years earlier by Panachakel et al. (2019); a NN was trained 
on wavelet features and managed  to drastically outperform previous state-of-the-art results with 57.15% 
for all 11 classes. In a similar fashion, a shallow NN was tested for the classification between nasal and 
bilabial phonemes from the K1 dataset (Panachakel et al., 2021). The study surpassed the previous 
benchmark methods, with accuracies reaching up to 95% on some participants.   

Recent work on EEG decoding of inner speech has explored further unique methods. Macías-
Macías et al. (2023) using the K1 dataset examined the binary tasks of bilabial, nasal, consonant, and 
vowel detection. Using capsule neural networks, they attempted to classify the signals based on their 
statistical attributes. A Capsule Network is a type of neural network that addresses some limitations of 
traditional CNNs, mainly handling spatial information and relations among various parts of the signal or 
image. Their experimental results suggest successful classification in all binary paradigms with accuracy 
over 90%, reaching up to 94% in certain tasks. In addition, Mahapatra & Bhuyan (2023) deployed another 
distinct NN with a Siamese Neural Network utilized for the classification of 6 words. These type of 
networks perform well for a small number of classes due to the pairwise comparison. The idea is that two 
identical sub-networks are trained for pairs of input, extracting characteristics and measuring the 
similarity (distance) between them; the weights are updated so that same class inputs have a small 
distance, and different classes fall far from each other. Even with a small dataset, the Siamese Network 
managed to outperform previous methods by a margin of 10% in accuracy, achieving an accuracy of 31.4% 
for 6-way classification.   

The above articles were based on supervised learning methods with the networks updating their 
weights based on the true class of the input with the aim to match inputs to the correct outputs. 
Mahapatra & Bhuyan (2022a) test a different type of learning, namely reinforcement  learning, along with 
DNNs; a deep Q-network (DQN) was developed to classify signal inputs into 5 different vowels.  This 
reinforcement learning method proved to have promising results as it achieved an accuracy of 81.69% 
when classifying all of the 5 vowels. Jiménez-Guarneros & Gómez-Gil (2021) addressed one of the most 
important issues in EEG classification, that of Inter-Subject Variability which results in EEG signals varying 
significantly between different individuals. They proposed a transfer learning technique named  
Unsupervised Domain Adaptation (UDA); a machine learning technique  that adapts a model trained on a 
source domain (e.g., one subject’s EEG data) to a target domain (e.g., another subject’s EEG data) without 
requiring labeled  data in the target domain. The Deep Learning-Based UDA utilizes deep learning models 
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for domain adaptation improving the ability to learn complex features. The proposed approach of 
Jiménez-Guarneros & Gómez-Gil (2021) was to utilize adaptive batch normalization on the target domain 
data and to introduce a novel loss function designed to match the distributions on the source and target 
domains. The novel method was tested using a bidirectional RNN (bi-RNN) consisting of two GRU layers. 
Two different datasets where used to test the performance of the proposed approach, with 5 words on 
the first and 2 long words on the second.  To test the transfer learning ability of the model, the training 
data consisted of all but one subject, and the models performance was evaluated with the data of the 
remaining subject (leave-one-out cross validation). The binary classification yielded slightly above chance 
level results, but the 5-word classification achieved an average accuracy of 61.02% showcasing the 
potential of such methods. 
 

5 . 4  L A R G E / O P E N  C O R P U S  W O R K S  
 

The vast majority of inner speech decoding from EEG literature consists of multi class classification of 

tokens, which was the primary focus of 28/30 articles included in the present review. Next, we briefly 

present different paradigms of inner speech classification based on the two remaining studies. 

Krishna et al. (2020) performed continuous inner speech recognition employing EEG signals from 

a corpus consisting of 30 unique English sentences. Four participants read silently 30 unique sentences 

from the USC-TIMIT database (Narayanan et al., 2013).  For classification, a Connectionist Temporal 

Classification (CTC) model was employed; a type of network used for sequence prediction problems where 

the alignment between the input and output sequences is unknown. Two GRUs were used for encoding 

the EEG signals and the encoded information is passed to a dense layer for decoding. The model is trained 

to minimize the CTC loss function link. The proposed model was evaluated using Word Error Rate (WER) 

as the suitable metric, noting a WER of 83.34 when using the 30 unique sentences. This result means that 

more than 4/5 predicted words are wrong considering the ground truth sequence. Even with such high 

error rates, this study is the first where continuous inner speech decoding is attempted and may pave the 

way for future research.   

Recently, in a more challenging endeavor, Wang & Ji (2022) tackled the goal of enhancing current 

brain-to-text systems beyond limited closed vocabularies. Their study introduces an open vocabulary EEG-

to-Text Sequence-to-Sequence decoding framework leveraging established language models. Utilizing the 

publicly available ZuCo EEG dataset (for details on dataset see Hollenstein et al., 2018; Hollenstein et al., 

2019), which includes participants’ brain activity while reading movie reviews; the study also captured eye 

movements using an eye tracker. The proposed architecture employs transformers, a powerful neural 

network architecture, to map EEG data into embeddings. These embeddings are subsequently inputted 

into a pre-trained Large Language Model (LLM) to generate tokens corresponding to decoded text. This 

novel idea by Wang & Ji (2022) managed to achieve best accuracy on the field of open-vocabulary EEG-

to-text decoding, an area of BCI that is still very much in its infancy.  
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6 CONCLUSI ON  
 
 
The application of artificial intelligence, particularly Deep Learning, to inner speech holds considerable 
promise as a transformative approach, offering novel pathways to decode and harness internal linguistic 
and cognitive processes. Its capacity to model complex patterns positions it as a powerful tool for the BCI 
field; yet significant gaps persist in inner speech research, which require further investigation: 
 
i. Challenges in Data Collection for Model Training 

Studying inner speech presents difficulties in gathering the large datasets needed for Deep Learning. 
Unlike external speech, which benefits from vast audio databases, inner speech relies on indirect 
signals gathered via speakers’ recruitment. Consequently, generating large-scale data remains 
challenging. 

ii. Obstacles to Real-Time Use 
Using inner speech for instant applications, such as silent communication, requires fast processing. 
Considering that Deep Learning models are computationally demanding, and non-invasive neural 
signals are often noisy make the implementation difficult, highlighting the need for more efficient 
systems with higher accuracy. 

iii. Issues with Generalization Across Speakers 
Inner speech varies widely due to differences in languages tested and classes selected in 
experimental design. Models trained on a small number of participants often struggle are limited 
when applied to broader populations of multiple language backgrounds. Developing adaptable 
systems that can handle this variation without constant retraining remains a key challenge. 

iv. Limited Use of Multimodal Data 
Most research focuses on brain signals, but inner speech may also involve subtle physical cues, like 
eye movement activity. Combining these signals in Deep Learning models could improve accuracy, 
yet this area remains largely unexplored. 

v. Ethical and Transparency Concerns 
Applying AI to internal thought processes raises serious ethical questions, especially regarding privacy 
and consent. Additionally, Deep Learning models often function as "black boxes," making it unclear 
how decisions are made. Ensuring both ethical standards and model transparency requires further 
development. 

 
These gaps highlight directions for future research, which could include applying methods from spoken 
language analysis, creating artificial inner speech datasets, or working more closely with neuroscience. 
Solving these challenges could lead to major advances, such as silent communication systems or tools. 
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