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Executive Summary: Decoding imagined speech from electroencephalography (EEG) signals represents 
a significant advancement in brain-computer interface (BCI) research, offering new possibilities for 
assistive communication and neurorehabilitation. This report presents an in-depth investigation of 
three distinct decoding approaches: (i) Riemannian Geometry-based analysis for feature extraction and 
denoising, (ii) a hybrid deep learning framework combining EEGNet with Riemannian Geometry, and 
(iii) an attention-based EEG Conformer model. These methods are evaluated using publicly available 
datasets, incorporating neuroscientific principles from the dual-stream model of speech processing to 
improve decoding accuracy. The findings indicate that Riemannian Geometry methods enhance the 
discrimination of imagined speech patterns by leveraging spatial covariance matrices, while the 
EEGNet-Riemannian hybrid improves classification performance through end-to-end feature learning. 
The EEG Conformer, despite its promise in capturing long-range dependencies, exhibits challenges 
related to generalization and overfitting. Across all approaches, subject variability and the difficulty of 
distinguishing phonetically similar words remain significant hurdles. The code for the methodologies 
described in this report are available at the project’s code repository 
 
The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made of 
the information contained therein. The information in this document is provided as is and no guarantee or warranty is given that the 
information is fit for any particular purpose.  The user thereof uses the information at its sole risk and liability. 
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A B B R E V I A T I O N S  A N D  A C R O N Y M S  
 

BCI Brain Computer Interface 

EEG ElectroEncephaloGram 

SCP Spatial Covariance Matrices (interchangeable with CCV) 

CCV Cross Covariance Matrices 
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1 .  I N T R O D U C T I O N  
 
Inner speech, the silent verbalization of thoughts, plays a crucial role in cognitive processes such as 
memory, problem-solving, and self-regulation. Decoding inner speech from brain activity presents 
significant challenges but holds promise for brain-computer interfaces (BCIs), neurorehabilitation, and 
communication aids for individuals with speech impairments. Electroencephalography (EEG), a non-
invasive neuroimaging technique, is widely used in this context due to its high temporal resolution and 
ease of application. Decoding inner speech from EEG signals requires advanced machine learning 
techniques to extract relevant features and classify neural activity patterns. Common approaches include 
[Lopez-Bernal, 2022]: 

● Feature extraction methods: Time-domain (e.g., event-related potentials), frequency-domain (e.g., 
power spectral density), and time-frequency domain (e.g., wavelet transforms) analyses are 
commonly used to isolate relevant EEG features. 

● Traditional classifiers: Machine learning models such as support vector machines (SVMs), linear 
discriminant analysis (LDA), and k-nearest neighbors (k-NN) are applied to distinguish inner speech-
related EEG patterns from other brain activity. 

● Deep learning techniques: Neural networks, particularly convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), have demonstrated promising results in decoding complex EEG 
patterns. Hybrid models, such as long short-term memory (LSTM)-CNN architectures, leverage spatial 
and temporal dependencies for improved accuracy. 

● Transfer learning and domain adaptation: Due to inter-subject variability in EEG signals, transfer 
learning techniques are employed to adapt models trained on one subject to new subjects with 
minimal retraining. 

Despite progress, inner speech decoding remains a challenging task due to low signal-to-noise ratio, 
individual variability, and the subtle neural correlates of inner speech. In order to promote future research 
and improve decoding accuracy through multimodal approaches, we have developed and tested three 
different approaches that inherently consider the most prominent neuroscientific model of speech 
processing, namely, the two stream hypothesis [Hickok, 2022]. This model delineates the roles of two 
cortical pathways in speech processing: 

● Dorsal stream: This stream is responsible for sensorimotor integration, linking auditory 
representations with speech production. It plays a crucial role in mapping sounds to articulatory 
movements and is heavily involved in phonological processing. Key brain regions include the superior 
temporal gyrus, premotor cortex, inferior parietal lobule, and the arcuate fasciculus, a critical white 
matter tract connecting auditory and motor speech areas. The dorsal stream is essential not only for 
overt speech but also for covert (inner) speech, enabling individuals to internally rehearse and 
manipulate linguistic representations. 

● Ventral stream: This pathway is responsible for speech comprehension, facilitating the 
transformation of auditory input into meaningful linguistic information. It primarily involves the 
superior and middle temporal lobes, as well as the anterior temporal lobe, which are crucial for lexical 
and semantic processing. Unlike the dorsal stream, which is more concerned with the mechanics of 
speech, the ventral stream is engaged in understanding and interpreting spoken and inner language, 
allowing for internal dialogue and conceptual thinking. 
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In the context of inner speech, both streams are engaged in an interplay, but the dorsal stream is 
particularly implicated in maintaining and manipulating phonological representations without overt 
articulation, while the ventral stream supports the internal generation and understanding of semantic 
content. 

To this end, in this document we present the results from three distinct approaches that may consider 
such an interplay between different cortical regions inherently. The first approach is based on Riemannian 
Geometry tools and may serve as a denoising procedure on connectivity brain data (captured by means 
of covariance matrices). The second approach, presented as a poster in EUSIPCO 2024 as part of BINGO’s 
dissemination activities, corresponds to an end-to-end neural network that combines learnable temporal 
filters followed also by a learnable module that operates on the multiplexed functional connectivity of 
temporally filtered brain signals. Finally, the third approach, which is only primarily tested, constitutes a 
hybrid model between convolutional neural networks (CNNs) and attention mechanisms so as uncover 
the contextual temporal dependencies that underpin speech processing. It should be noted, that two 
publicly available datasets are employed so as to examine the effectiveness of these approaches. It is 
noted that the code for the methodologies described in this report are available at the project’s code 
repository https://github.com/BINGO-BCI and will constitute a part of project’s toolbox. 

 

  

https://github.com/BINGO-BCI
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2 .  D A T A S E T S  
2 . 1  K A R A  O N E  
The dataset [Zhao, 2015] consists of 14 participants, with an average age of 27, who were instructed to 
imagine pronouncing and consequently to speak aloud 7 phonemes or syllables: (/iy/, /uw/, /piy/, /tiy/, 
/diy/, /m/, /n/) and 4 words: (pat, pot, knew, and gnaw) over the course of 30 to 40 minutes. The 
participants were seated in front of a computer monitor and a Microsoft Kinect camera and a research 
assistant placed an EEG cap on their heads. The data collected combine 3 modalities: EEG signals, face 
tracking and audio. A 64-channel Neuroscan Quick-cap was used, the electrode placement followed the 
1020 rule and the data were sampled at 1kHz. 

Each trial consisted of 4 states. First, there is a 5-second rest state where the participants were instructed 
to relax. Next, in the stimulus state, the prompt text appeared on the screen and its corresponding audio 
played from the speakers. A 5-second imagined speech state follows where the participants imagined 
pronouncing the prompt without moving their articulators and finally, they spoke the prompt aloud. In 
this work, we only employed the EEG segments corresponding to imagined speech. The data from 11 out 
of 14 participants were utilized to maintain uniformity in the number of trials. For each participant, 132 
trials were conducted, 12 for each prompt. 

2 . 2  2 0 2 0  B C I  C O M P E T I T I O N  D A T A S E T  
In this case [Jeong, 2022], 15 participants, aged between 20-30 years, were instructed to imagine 
pronouncing five words/phrases, namely: (“hello,” “help me,” “stop,” “thank you,” and “yes”). During the 
experiment, the subjects were seated in a comfortable chair in front of a 24-inch LCD monitor screen and 
were asked to solely focus on the given task without moving their articulators nor making any sound. For 
the recording, 64 EEG electrodes following a 10-20 international configuration were used. 

An auditory cue of a randomly chosen prompt is introduced to the participants for 2 s, followed by the 
visual cue of a cross mark on the screen that lasted between 0.8-1.2 s. The subjects imagined pronouncing 
the given prompt as soon as the cross mark disappears. During this phase, the participants received no 
stimulus at all in order to avoid any unwanted brain activity. The cross-mark presentation on the screen 
and the consequent imagined speech phase (2s) were repeated 4 times in a row for each random cue. 
Before proceeding to the next word/phrase, the subjects were given 3s to relax and clear their minds. 

 

Fig. 2.1. Timeline of the experimental procedure. Image source: https://osf.io/ymvjz. 

In total, 400 trials were conducted for each subject, 80 trials per prompt, out of which 300 are dedicated 
for training, 50 for validation and the remaining 50 for testing. 
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2 .  R I E M A N N I A N  G E O M E T R Y  
2 . 1  M O T I V A T I O N  
Riemannian geometry has emerged as a powerful mathematical framework for EEG-based decoding, 
including inner speech recognition. Unlike traditional machine learning approaches that rely on feature 
extraction, Riemannian geometry leverages the structure of spatial covariance matrices (SCP; also referred 
to as Cross Covariance matrices, CCV), treating EEG data as points on a geometric manifold. This method 
enhances classification performance by capturing the intrinsic geometry and connectivity of brain signals. 
By modeling EEG covariance matrices in a Riemannian framework, these approaches reduce sensitivity to 
noise and enhance discrimination between inner speech states, making them promising candidates for 
future advancements in BCI applications. In this section we present a methodological approach that can 
be interpreted as a robust estimation for covariance matrices under the constraint of a common mixing 
matrix and uncorrelated activity in the source space. 

2 . 2  M E T H O D O L O G Y  
ELEMENTS OF RIEMANNIAN GEOMETRY 
Let Xi ∈ RE×T ,i = 1,...,n be a multichannel EEG segment, where E denotes the number of electrodes, T the 
number of time samples and n the number of available segments (or trials). Each segment (assuming zero 

mean signals) can also be described by the corresponding spatial covariance matrix 𝐶𝑖 =
1

𝑇−1
𝑋𝑖𝑋𝑖

⊤ ∈

𝑅𝐸×𝐸, where (·)⊤ denotes the transpose operator. By definition and under a sufficiently large T value to 
guarantee a full rank covariance matrix, spatial covariance matrices are Symmetric Positive Definite (SPD) 
that lie on a Riemannian manifold instead of a vector space (e.g. scalar multiplication does not hold on 
the SPD manifold). In the field of differential geometry, a Riemannian manifold is a real, smooth manifold 
endowed with an inner product on the tangent space of each point that varies smoothly from point to 
point. 

When treating EEG data, the manifold of SPD matrices denoted by Sym+
E = {C ∈ RE×E : x⊤Cx > 0, for all non-

zero x ∈ RE}, is typically studied when it is equipped with the AIRM [Conney, 2020], 

 ⟨A,B⟩P≜ Trace(P−1AP−1B) (1) 

for P ∈ Sym+
E and 𝐴, 𝐵 ∈ 𝑇𝐸

+(𝑃), where 𝑇𝐸
+(𝑃) denotes the tangent space of Sym+

E at P. Then, the following 
geodesic distance is induced 

 𝛿(𝐶𝑖, 𝐶𝑗) = ‖𝑙𝑜𝑔𝑚 (𝐶𝑖
−1/2

𝐶𝑗𝐶𝑖
−1/2

) ‖𝐹 = √∑𝐸
𝑞=1 𝑙𝑜𝑔2𝜆𝑞 (2) 

where logm(·) denotes the matrix logarithm operator and λq the eigenvalues of the matrix Ci
−

 
1/2CjCi

−
 
1/2 or 

equivalently of the matrix Ci
-1Cj. We note that these two matrices are similar (i.e., hold the same 

eigenvalues) and that the indices i and j can be permuted. Among the other useful properties that are 
discussed thoroughly in [Pennec, 2006], δ is congruent invariant for non-singular matrices W, i.e. 
δ(WCiW⊤,WCjW⊤) = δ(Ci,Cj). This is an important property in EEG signal processing since it provides 
equivalence between the sensor and the source space [Congedo, 2017]. According to the prevailing EEG 
model, the recorded activity is well approximated by a linear mixture of source signals. Hence, Xi = MSi 

with M denoting the mixing matrix and Si the source signals. Then, by substituting the observed signal with 
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the equivalent mixing of sources, one may obtain the following covariance matrix, 𝐶𝑖 =
1

𝑇−1
𝑀𝑆𝑖𝑆𝑖

⊤𝑀𝑖
⊤. 

Therefore, the mixing procedure in the time domain results in a congruent transformation in the 
corresponding covariance matrices. It becomes obvious that since δ is invariant to such transformations, 
the two spaces are considered equivalent. In a strict mathematical sense this is partially true (e.g., for 
certain forms of M) and this topic is thoroughly discussed in [Congedo, 2017]. Hereafter, the terms “AIRM-
induced geodesic distance” or simply “geodesic distance” will be used interchangeably and will refer to 
Equation 2. 

AJD-BASED COVARIANCE ESTIMATION 
The mixing matrix, denoted as M, is determined by the position and orientation of dipoles in the brain, 
the physical characteristics of the head, and the placement of electrodes on the scalp. It is therefore 
reasonable to assume that M remains constant for a certain period, such as during a single recording 
session. Assuming that sources are independent and the associated activity (i.e., source signals) are 
uncorrelated, the spatial covariance matrices of the sources are diagonal. 

The process of estimating the mixing matrix, denoted as M, from the observed sensor signals is an ill-
posed problem known as Blind Source Separation (BSS) [Müller, 2004]. Two approaches are commonly 
used to tackle the BSS problem: The first approach is Independent Component Analysis (ICA), which aims 
to transform the data so that the components become as independent as possible [Hyvärinen, 1999]. An 
alternative approach involves using the diagonality of certain characteristic matrices derived from the 
data to approximate M−1 through the concept of AJD [Ziehe, 2005]. This involves finding an orthonormal 
change of basis denoted as U, which makes the set of symmetric square matrices as diagonal as possible. 
This, second approach, intuitively uncovers the ’average eigenspace’ of matrices that are approximately 
jointly diagonalizable [Cardoso, 1996]. 

Following the notation of previous section, we denote by Ci covariance matrix that corresponds to the EEG 
trial, Xi. Let U be the orthonormal matrix calculated by AJD over the set of Ci with i = 1,...,n that estimates 
the mixing matrix M. Then, each Ci can be transformed to a dominantly diagonal matrix through U⊤CiU. As 
such, we can reconstruct (i.e., re-estimate) all the spatial covariance matrices under the constraint of a 

common eigenspace by using the formula 𝐶�̃�= U diag(U⊤CiU) U⊤. Here, the diag(·) operator, which discards 
the nondiagonal elements of a matrix and obtains a strictly diagonal matrix, is applied upon an almost 
diagonal matrix and hence achieves a good re-estimation of the original covariance matrix. 

This estimation approach forces all the spatial covariance matrices to admit a common mixing matrix and, 
hence, acts as a denoising procedure that abides to well-established neuroscientific theories. In addition, 
the estimated covariance matrices are guaranteed to hold the SPD property which allows the employment 
of Riemannian geometry. A more detailed description about the advantages and the mathematical 
properties of this covariance estimation can be found in [Kalaganis, 2022]. 

2 . 3  R E S U L T S  
PRELIMINARY STUDY: SPECTROTEMPORAL ANALYSIS AND SENSOR SELECTION 
Taking into account the high subject variability encountered in EEG data, a preliminary analysis for each 
subject was performed that aimed to identify the exact brain areas (i.e. sensors), timing (i.e. trial 
segments) and spectral components (i.e. frequency ranges) that the phenomenon of imagined speech 
takes place, with the scope of decoding the underlying phenomenon in the best possible way. In this 
context, a wavelet filter bank approach that disentangles the input signal into multiple frequency 
components without losing the signal’s temporal characteristics is employed. It is noted that wavelets are 
characterized by time locality, allowing an efficient capture of transient behavior in a signal, which is of 
essence in the case of imagined speech decoding. Working on the training set for each subject 
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independently, we applied the continuous wavelet transform (FBCWT, based on morse wavelet function 
and Matlab filter bank implementation) within the [1-100]Hz frequency range and derive the associated 
scalogram for each trial separately. Following the aforementioned procedure, all single-trial scalograms 
were averaged, regardless their label, to derive a spectrotemporal profile of activation for every sensor. 
Finally, using the baseline period, the mean and std of each scale was estimated and used to derive a 
threshold value (mean+3std) that in turn was employed to reveal the significant event-related spectral 
perturbations. The process is completed with detection of the sensors, segments and frequencies of 
interest based on the thresholding process. 

Fig.2 illustrates the averaged FBCWT patterns for an indicative set of sensors for an exemplar subject (i.e. 
subject S1), after the thresholding process is completed. It is important to note here, that for clarity 
purposes only a selected number of sensors is presented. The visual inspection of the figure provides 
answers regarding the three research questions posed in this subsection. Starting from identification of 
the brain areas that the imagined speech phenomenon takes place, it is evident that the most informative 
sensors are located over the Broca’s area (e.g., FT7, FT9 and T7), a trend that aligns well with what is 
reported in relevant bibliography regarding the brain areas activated during the task of imagined speech 
[Si, 2021]. On the contrary, the activation levels on sensors located over areas that are not associated with 
the mental speech task, like the middle area (e.g., sensors Pz, CPz and Fz), is significantly lower. Moving 
to the temporal domain, it is obvious that a reaction period of approximately 500ms is required before 
the mental imagery process is initiated by the participant, which is typical, while varying among 
individuals, when cue-based triggers mark the initiation of a task. Consequently, this process, upon 
appropriate modifications, can be employed as an onset detection procedure, which is of paramount 
importance in self-paced and online BCI paradigms. In the spectral domain, and specifically for the sensors 
characterized by high activity (such as FT7, FT9 and T7), three frequency ranges of interest can be 
identified: (i) Low ([5-20]Hz), (ii) Medium ([40-55]Hz) and, (iii) High ([≥70]Hz), with the High frequency 
range being empirically identified, based on the validation set, as the one with the highest discriminative 
power. Finally, we should note that while the trends observed for subject S1 are similar for the other 
subjects, the exact optimal sensors, segments and frequencies, as expected differ among them, 
showcasing the necessity and importance of this preliminary study. 

 
Fig.3.1. Spectrotemporal analysis for the sensors characterized by the highest (left panel) and lowest (right 
panel) activation levels. The stimulus onset is indicated by the black vertical identified at t=0s and 
corresponds to cross disappearance as depicted in Fig. 2.1. 
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CLASSIFICATION RESULTS 
Fig.3 presents the overall accuracy of the proposed decoder (Fig.3.2A, Fig.3.2B) and also the accuracy 
scores obtained for each subject independently (Fig.3.2C). In particular, the employed decoder is based 
on the estimation of covariance matrix (as described in section 3.2) from EEG signals in the frequency 
range above 70Hz while employing a Riemannian k-NN classifier where distance is calculated according to 
Eq. 2. By exploiting the validation set for each subject independently, k = 3 was identified as the most 
suitable value in terms of accuracy. We note that the provided test set is employed only for the purposes 
of obtaining and reporting the classification performance in this section. 

 

Fig.3.2. The global and subject-wise performance of the proposed decoder. (A) The overall classification 
accuracy compartmentalized for each imagined prompt, (B) The total confusion matrix, and (C) The 
average classification accuracy per subject. 

 

It is evident that despite the high subject variability, the majority of the subjects perform well when the 
imagined prompt is monosyllabic (see Fig.3.2A). This trend may imply that a different approach focusing 
on syllables rather than words may be required to better decipher the phenomenon of imagined speech. 
In the same direction, disentangling the two prompts starting with the same syllable “He” (i.e. “Hello” and 
“Help me”) seems highly challenging, given the high false positive values. Returning to the subject 
variability issue, while the accuracy for the majority of the subjects revolve around 70%, there are subjects 
with accuracy lower or barely exceeding 50% (i.e. S2, S10, S14), while there are also cases characterized 
by near-optimal performance (e.g. S3, S5). Considering the nature of the task (i.e. mental task) that in 
some cases may not be completely straightforward, it is not unlikely that some participants may require 
a familiarization period prior to the engagement with such tasks, as in the case of the motor imagery 
paradigm [Georgiadis, 2019]. 

Despite the aforementioned, the proposed decoding scheme provides classification scores that 
significantly exceed the random level for this five-class problem that comes at 20%. Finally, it must be 
noted that the achieved performance surpasses all but one the competitive approaches regarding the 
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selected dataset [Jeong, 2022]. Additionally, the employed AJD-based covariance estimator surpasses the 
classical covariance estimator, under the same classification setting, by 3.1% while exhibiting the same 
trends in class-specific classification results. 
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3 .  E E G N E T  C O M B I N E D  W I T H  
R I E M A N N I A N  G E O M E T R Y  
 

3 . 1  M O T I V A T I O N  
Preliminary attempts of decoding imagined speech from EEG signals comprised extraction of statistical 
features (such as mean, variance, skewness and kurtosis) [Min, 2016; Zhao, 2015] or wavelet transform 
coefficients and classification [Jahangiri, 2018; Jahangiri, 2019a; Jahangiri, 2019b; Panachakel, 2019; 
Sereshkeh, 2019; Torres-García, 2012] with conventional machine learning algorithms such as Support 
Vector Machines (SVM), Deep Belief Networks (DBN) and Extreme Learning Machines (ELM). In another 
approach, instead of working with raw EEG data, researchers used Cross Covariance matrices (CCV) 
encoding statistical correlation between EEG channels [Saha, 2019; Saha, 2013; Kalaganis, 2023]. A basic 
characteristic of CCV matrices, namely being symmetric positive definite, allows for alternative processing 
directions utilizing basic manifold properties that originate from Riemannian geometry. Recent 
approaches following this pathway have achieved remarkable performance on similar BCI applications 
[Kalaganis, 2019; Kalaganis, 2022; Georgiadis, 2022; Georgiadis, 2023]. These results motivated the 
integration of Riemannian geometry with deep learning techniques, one of the most prominent example 
of which is the SPDNet [Huang, 2017]. More recent studies focused on implementing different deep 
learning methods, mostly Convolutional Neural Network (CNN) architectures, that demonstrated very 
promising results, at least when examined on other BCI paradigms. Some of the widely used architectures 
are the shallow ConvNet, the deep ConvNet [S.R., 2017] and the EEGNet [Lawhern, 2018]. 

Our approach utilizes some basic concepts, stemming from both CNNs and CCVs, in an effort to combine 
the best of the two worlds towards building a novel, end-to-end, deep learning architecture. Specifically, 
the first part of the introduced architecture consists of a convolutional layer of temporal filters as 
implemented in EEGNet. The output feature maps (i.e., EEG signals filtered in the temporal domain) 
correspond to selected frequency bands where the most significant brain activation occured. The second 
part involves converting the resulting maps into CCV matrices. Each matrix is then subjected to multiple 
linear transformations such that the output matrices also lie in Riemannian manifolds (potentially of 
varying dimensions) in accordance with SPDNet architecture. Ultimately, the LogEuclidean metric is 
computed for each matrix and the information is transferred to a fully connected layer for the purpose of 
classification. As stated earlier, the combination of the above mentioned parts constitute an end-to-end 
trainable network. In essence, the proposed architecture calculates CCV matrices that can capture the 
brain connectivity structure that underpins the imagined speech paradigm at various frequency bands. 
The motivation for employing this particular architecture for the task at hand is related to the “dual stream 
model” according to which several brain regions are involved and interconnected during speech 
formulation and understanding [Cooney, 2018]. We note that the methodology presented in this has been 
presented in EUSIPCO 2024 as part of the BINGO’s outcomes. The code for this methodology will be 
uploaded as part of project’s toolbox. 

 

3 . 2  M E T H O D O L O G Y  
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PREPROCESSING 
In the Kara One dataset, the raw EEG signals are filtered using a 3rd order high-pass Butterworth filter 
with cut-off frequency 1Hz. A wavelet ICA algorithm is then employed for the purpose of artifact removal 
and denoising. The EEG segments corresponding to the imagined speech stage are ultimately fed to the 
classification algorithms. 

No preprocessing steps are followed in the second dataset since the 2020 BCI competition provided the 
signals in the form of labelled EEG trial segments. 

NETWORK ARCHITECTURE 
The proposed architecture is an end-to-end trainable network that combines the convolutional temporal 
filters as implemented in EEGNet with the linear Symmetric Positive Definite (SPD) matrix transformations 
utilized in SPDNet architecture as shown in Fig.2. 

 
Fig. 4.1. EEGNet-SPDNet architecture. 

 
Below we provide the key components of the network, tailored to imagined speech decoding: 

• The temporal filters are convolutional 2D filters with shape , where fs is the sample frequency. 

The convolutional layer is followed by a batch normalization layer, a non-linearity ReLU, a mean 
pooling layer of size (1,4) and a dropout layer with probability 0.5. The filters output feature maps 

containing the EEG signal in different band-pass frequencies leaving the channel dimension 

unaffected. 

• The different versions (feature maps) of the EEG signal are then converted to the corresponding 

covariance matrices. 

• Each matrix is then subjected to multiple bilinear transformations that map SPD matrices to other 
SPD matrices of different dimension. If the input matrix is denoted as: 

X∈ RN×N, the output matrix as: Y ∈ RM×M and the transformation matrix as: W∈ RM×N then the mapping 
is as follows: 

Y = WXWT. (1) 

The trainable parameters in this part are the elements of the transformation matrix. The output 
matrix Y is symmetric positive definite if the transformation matrix W is full rank on the rows. Thus, 
an exclusive optimizing procedure take place here such that this essential matrix property is 
preserved. The transformation is followed by a non-linearity layer the function of which is the 
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rectification of the eigenvalues. Given the diagonalization of Y as X = UΣUT and the output matrix 
denoted as: 
Z, the rectification is: 

Z = Umax(εI,Σ)UT (2) 

where ε > 0 is the rectification threshold. The max(εI,Σ) is a diagonal matrix where each diagonal value 
(eigenvalue) of Σ is replaced by: max(ε,ei). Essentially, this process prevents eigenvalues from 
approaching zero. Finally, the matrices are mapped to Euclidean space via the implementation of Log-
Euclidean metric and consequently to a linear output layer through flattening. 

3 . 3  R E S U L T S  
A. KARA ONE 
Fig.4.2 (top) presents the overall accuracy of the proposed architecture when tested with Kara One 
dataset as well as the accuracy scores obtained for each subject. Both training and validation are 
conducted on a personalized level, fitting a different network for each subject. It is apparent from the 
confusion matrix (Fig.4.2 - Top Right) that the network was able to adequately distinguish phoneme from 
word prompts but hardly disentangled phonetically similar words (pat/pot and knew/gnaw). The best 
accuracy is measured in one letter phonemes (/m/, /n/). The novel method implemented in this work 
exhibits superior performance compared to the EEGNet that barely exceeded random level (9.1%). When 
it comes to intra-subject multi-classification of words and phonemes, our approach outperforms 
handcrafted features (i.e. MFCC) combined with SVMs [Cooney, 2018] by 4%. It achieved similar overall 
accuracy with inter-subject training and validation attempts that employed CNN architectures as well 
[Rusnac, 2020]. The overall performance of our approach as shown in Table I surpassed all but one 
competitive approach found in the literature regarding this particular classification task [Panachakel, 
2019]. 
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B. 2020 BCI COMPETITION 
Training and validation took place separately for each subject in this case as well. A major observation 
from the overall accuracies for each subject (Fig.4.2 - Bottom Left) is the subject variability: there are 
subjects with accuracy as high as 80% (S11) while others that do not exceed 60% (S6, S15). The complexity 
of the specific task (imagined speech) could be one factor contributing to this. The novel architecture 
employed significantly outperformed EEGNet in this case as well (Table 4.1). As mentioned earlier, the 
attained performance here is on par with the top results of the competition, namely similar to the 
competitor approach with the second highest average accuracy [J.J., 2022]. 

 
 
  

Fig. 4.2. The overall and subject-wise performance on Kara One dataset (top), 2020 BCI Competition dataset 
(bottom). Left: Classification accuracy per subject and overall (red line). Middle: Classification accuracy across all 
participants for each imagined prompt. Right: Total confusion matrix 

Table 4.1. Mean accuracy for each classification method test on two distinct datasets 

 Mean Accuracy (%) 
Kara One 2020 BCI Comp. 

MFCC - SVM 17.84 37.86 
EEGNet 14.05 50.26 

EEGNet + SPDNet 24.79 66.93 
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4 .  E E G  C O N F O R M E R  
 

4 . 1  M O T I V A T I O N  
The EEG Conformer architecture has recently gained attention as an advanced deep learning model for 
decoding inner speech from EEG signals. The Conformer model, originally designed for speech processing, 
combines convolutional neural networks (CNNs) and transformers, enabling both local feature extraction 
and long-range temporal dependencies. 
 
Motivating its use in inner speech decoding, the Conformer architecture is particularly suited for EEG data 
due to: 
● Temporal Context Modeling: Inner speech exhibits complex temporal dependencies, and 

transformers within the Conformer architecture excel at capturing these long-range patterns. 
● Local Feature Extraction: Convolutional layers effectively extract local EEG features, enhancing the 

model’s ability to recognize fine-grained neural activity patterns. 
● Self-Attention Mechanism: This allows the model to focus on the most relevant neural 

representations while filtering out noise, a crucial factor in EEG-based decoding. 
● Robust Generalization: The combination of CNNs and transformers helps mitigate inter-subject 

variability, improving model adaptability across different individuals. 
 
By leveraging these capabilities, EEG Conformer models may provide a state-of-the-art solution for inner 
speech decoding, potentially improving the accuracy and reliability of BCIs for communication and 
assistive technologies. It is noted that the code for this methodology will be uploaded as part of project’s 
toolbox 
 

4 . 2  M E T H O D O L O G Y  
The overall framework is depicted in Fig. 4.1. The architecture comprises three components: a convolution 
module, a self-attention module, and a fully-connected classifier. In the convolution module, taking the 
raw two-dimensional EEG trials as the input, temporal and spatial convolutional layers are applied along 
the time dimension and electrode channel dimensions, respectively. Then, an average pooling layer is 
utilized to suppress noise interference while improving generalization. Secondly, the spatial-temporal 
representation obtained by the convolution module is fed into the self-attention module. The self-
attention module further extracts the long-term temporal features by measuring the global correlations 
between different time positions in the feature maps. Finally, a compact classifier consisting of several 
fully-connected layers is adopted to output the decoding results. 
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Fig. 4.1. The framework of Convolutional Transformer (Conformer), including a convolution module, a 
self-attention module, and a classifier module. Image source: 
https://ieeexplore.ieee.org/document/9991178  
 

PREPROCESSING 

THE RAW EEG TRIALS ARE OF SIZE CH × SP , WHERE CH REPRESENTS ELECTRODE CHANNELS AND SP 
DENOTES TIME SAMPLES. WE ONLY USE A FEW STEPS TO PRE-PROCESS THE RAW EEG DATA. FIRST, BAND-
PASS FILTERING IS EMPLOYED TO FILTER OUT EXTRANEOUS HIGH AND LOW-FREQUENCY NOISE. HERE, 
WE USE A 6-ORDER CHEBYSHEV FILTER TO PRESERVE TASK-RELEVANT RHYTHMS. THEN, A Z-SCORE 
STANDARDIZATION IS PERFORMED TO REDUCE THE FLUCTUATION AND NONSTATIONARITY AS  

𝑥𝑜 =
𝑥𝑖 − 𝜇

√𝜎2
 

where 𝑥𝑖 and 𝑥𝑜 denote band-pass filtered data and the output of standardization, respectively. μ and σ2 
represent the mean and variance, calculated with the training data and used directly for the test data. 
 

NETWORK ARCHTECTURE 
Convolution Module: Inspired by [Schirrmeister, 2017] and [Lawhern, 2018], the convolution module is 
designed by decomposing the two-dimensional convolution operation into two sequential one-
dimensional layers: a temporal convolution and a spatial convolution. The first layer applies k kernels of 
size (1,25) with a stride of (1,1), focusing on capturing temporal patterns. The second layer maintains k 
kernels of size (ch,1) with a stride of (1,1), where ch represents the number of EEG electrode channels. 
This layer functions as a spatial filter, learning inter-channel interactions in EEG signals. To enhance 
training efficiency and mitigate overfitting, batch normalization is employed. Exponential Linear Units 
(ELUs) are used as the activation function to introduce nonlinearity, following [Lawhern, 2018]. The third 
layer consists of an average pooling operation along the time axis, utilizing a kernel size of (1,75) and a 
stride of (1,15), which smooths temporal features, reduces overfitting, and decreases computational 
demands. Finally, the feature maps from the convolution module are rearranged by compressing the 
electrode channel dimension and swapping the convolution channel dimension with the time dimension. 
This transformation ensures that all feature channels corresponding to each time step are treated as 
tokens and fed into the next module. 
Self-Attention Module: We assume that incorporating context-dependent representations into low-level 
temporal-spatial features can enhance EEG decoding, given the coherence of neural activity. To achieve 
this, self-attention is utilized in this module to capture global temporal dependencies in EEG features, 
addressing the constrained receptive field of the convolution module. The tokens processed in the 
previous stage are linearly transformed into three identical components: query (Q), key (K), and value (V). 
The correlation between tokens is computed using a dot product between Q and K. A scaling factor is 

https://ieeexplore.ieee.org/document/9991178
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introduced to prevent gradient vanishing, ensuring stable training. The resulting values are then processed 
through a Softmax function to generate an attention score matrix. Finally, this attention score is applied 
to V using a dot product to weight the features accordingly [Vaswani, 2017]. This process can be 
formulated as 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑘
) 𝑉 

where k denotes the length of a token. Besides, two fully-connected feed-forward layers are connected 
behind to enhance the fitting ability. The input and output sizes of this process remain the same. The 
entire attention computation is repeated N times in the self-attention module. 
We also employ the multi-head strategy to further improve representation diversity. The tokens are 
equally divided into h segments and fed into the self-attention module separately, and the results are 
concatenated as the module output [Vaswani, 2017]. The process can be expressed as  

𝑀𝐻𝐴(𝑄, 𝐾, 𝑉) = [ℎ𝑒𝑎𝑑0; ⋯ ; ℎ𝑒𝑎𝑑ℎ−1],  
ℎ𝑒𝑎𝑑𝑙 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄𝑙 , 𝐾𝑙 , 𝑉𝑙) 

 

where MHA stands for multi-head attention, 𝑄𝑙 , 𝐾𝑙 , 𝑉𝑙 ∈ 𝑅𝑚×𝑘/ℎ   denote the query, key, and value 
obtained by linear transformation of divided token in the l -th head, respectively. 
 
Classification Module: Finally, we adopt two fully-connected layers as the classifier module, which 
outputs an M -dimensional vector after Softmax function. Cross-entropy is used as the loss function of the 
whole framework as 

𝐿 = −
1

𝑁𝑏
∑

𝑁𝑏

𝑖=1

∑

𝑀

𝑐=1

𝑦 𝑙𝑜𝑔 𝑙𝑜𝑔 (�̂�)  

where M represents the number of EEG categories, 𝑦 and �̂� are the ground truth and predicted label, 
respectively. Nb denotes the number of trials in a batch. 
 
 

4 . 3  R E S U L T S  ( P R E L I M I N A R Y )  
In this subsection we provide preliminary results of employing the EEG Conformer architecture on the 
2020 BCI competition dataset in a subject agnostic manner. The provided image below, Fig.4.2, illustrates 
the training and validation loss curves (under two different initialization settings) of an EEG Conformer 
model for decoding imagined speech over 20 epochs. The training loss (solid line) decreases consistently, 
demonstrating that the model is effectively learning from the training data. However, the validation loss 
(dotted line) does not exhibit a similar phenomenon and remains significantly higher than the training 
loss. This indicates potential overfitting, where the model is learning patterns specific to the training set 
but failing to generalize to unseen data. The divergence between the training and validation loss is a 
common issue in deep learning models, particularly when working with complex EEG signals, which 
inherently have high variability and noise. Possible solutions to improve generalization include 
regularization techniques such as dropout, weight decay, or data augmentation, as well as providing more 
diverse training data. Additionally, early stopping based on validation loss could help prevent overfitting. 
The high validation loss suggests that the model might not yet be reliable for real-world applications 
without further tuning and improvements. 
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Fig. 4.2. The training process of an EEG conformer, under two different initialization settings, for the 2020 
BCI competition dataset.  
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5 .  C O N C L U S I O N S  A N D  
F U T U R E  W O R K  
This report presents a comprehensive evaluation of imagined speech decoding approaches, leveraging 
advanced machine learning techniques and neuroscientific models. The study explored three distinct 
methodologies: (i) Riemannian Geometry-based decoding, (ii) EEGNet combined with Riemannian 
Geometry, and (iii) EEG Conformer. Each approach incorporates different perspectives on neural signal 
processing and classification, addressing the challenges posed by the inherent variability and low signal-
to-noise ratio of EEG data. 
The findings suggest that Riemannian Geometry-based methods provide robust feature extraction and 
denoising capabilities, enhancing classification performance in EEG-based imagined speech decoding. The 
integration of EEGNet with Riemannian Geometry demonstrated significant improvements over 
conventional neural networks, capturing spatiotemporal relationships while maintaining computational 
efficiency. Lastly, the preliminary results of the EEG Conformer model indicate the potential of attention-
based architectures in capturing long-range dependencies, though challenges related to overfitting and 
generalization remain. 
Despite promising results, inter-subject variability continues to pose a major challenge. The observed 
differences in classification accuracy among participants highlight the necessity of adaptive learning 
models that can accommodate individual neural patterns. Furthermore, the ability to differentiate 
phonetically similar words remains an open problem, suggesting the need for more sophisticated feature 
extraction techniques and alternative classification strategies. 
Building upon the current findings, future research will focus on the following areas: 

1. Enhancing Generalization and Adaptability: Developing subject-independent models through 
transfer learning, domain adaptation, and meta-learning approaches to improve generalization 
across individuals. 

2. Advanced Neural Architectures: Refining deep learning models by incorporating transformer-
based architectures with improved attention mechanisms, regularization techniques, and self-
supervised learning paradigms. 

3. Improved Data Collection Strategies: Conducting large-scale experiments with more diverse 
participants and incorporating real-world settings to ensure the validity of the proposed methods. 

4. Expanding the Lexicon: Extending the vocabulary of decoded words and syllables to enable more 
complex and naturalistic communication through BCIs. 

By addressing these challenges and research directions, our future studies will be aimed towards 
enhancing the feasibility and accuracy of imagined speech decoding, paving the way for practical 
applications in neurorehabilitation, assistive communication, and human-computer interaction. 
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