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INTRO DUCTI ON  
Understanding how the brain represents inner speech across different languages is a fundamental 
question in cognitive neuroscience, with direct implications for multilingual brain–computer interfaces 
and language-agnostic decoding systems. Electroencephalography (EEG) provides a non-invasive means 
to investigate the temporal and spectral dynamics underlying inner speech, yet the study of cross-
linguistic inner speech phenomena remains largely unexplored. This is due, in part, to the complexity of 
inner speech itself and to the scarcity of suitable datasets that combine multilingual paradigms with high-
quality EEG recordings. 

The objective of this deliverable is to investigate cross-linguistic neural phenomena associated with inner 
speech using EEG, with a particular focus on identifying language-invariant and language-dependent 
representations. To this end, two complementary analytical approaches are explored. The first leverages 
Riemannian geometry, which models EEG signals through covariance representations and exploits the 
intrinsic geometry of symmetric positive-definite matrices to enable robust cross-condition and cross-
language comparisons. The second approach employs spectro-temporal analysis, examining how 
frequency-specific and time-resolved neural dynamics contribute to inner speech representations across 
languages. Together, these methods provide a comprehensive framework for characterizing inner speech 
from both geometric and signal-processing perspectives. 

At the outset of this work, no suitable publicly available EEG datasets were identified that support 
systematic investigation of cross-linguistic inner speech, particularly with controlled bilingual or 
multilingual experimental designs. As a result, the proposed methodologies were applied to the BINGO 
cross-linguistic inner speech dataset (detailed in D3.1 v2), which was specifically collected to address this 
gap. The necessity of waiting for the completion of the data collection and validation process introduced 
an unavoidable delay of approximately two months in the execution timeline of this deliverable. 
Nevertheless, the availability of the BINGO dataset enabled a rigorous and methodologically sound 
investigation, ensuring that the analyses presented herein are grounded in high-quality, purpose-built EEG 
data. 
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DATASET  
The EEG acquisition protocol (for a detailed description of the selected lexical items, data pre-processing 
pipeline and the overall rationale of this experiment is presented in BINGO’s deliverable D3.1-v2) is 
organized into two distinct stages: an initial preparatory stage, referred to as the calibration phase, 
followed by the primary experimental stage, referred to as the inner speech trials. 

The calibration phase serves to establish an individual baseline of neural activity for each participant and 
is a critical step prior to the main task. It includes two conditions, each with a duration of one minute. In 
the eyes-open condition, participants are instructed to remain still while keeping their eyes open and 
focusing on a centrally displayed fixation cross (“+”). This condition captures baseline EEG activity during 
alert rest and visual fixation and is particularly informative for assessing alpha suppression in posterior 
regions. In the eyes-closed condition, participants are asked to close their eyes and relax, allowing for the 
observation of resting-state alpha oscillations, which typically increase in the absence of visual input. 

Together, these calibration conditions facilitate the identification and characterization of common 
artifacts, such as ocular and muscle-related activity, as well as background noise, thereby supporting more 
reliable analysis during the experimental phase. 

After calibration, participants proceed to the inner speech trials. Each trial follows a predefined sequence 
of visual cues and silent word articulation designed to elicit neural activity associated with covert speech 
production. To minimize order and block-related effects, all lexical items are presented in a randomized 
order, with a unique sequence generated for each participant. More specifically, each trial (we note that 
trials take place after eyes open/closed calibration period) adheres to a strict timeline with clearly defined 
time points and stimulus presentations: 

• t = -2.5 s: A randomly selected lexical item is presented on the screen (e.g., “vehicle” or “όχημα”). 
Participants are instructed to attend to the word and retain it in working memory, without producing any 
overt speech or engaging in subvocal rehearsal. 

• t = -1 s: The lexical item is removed from the screen, eliminating external visual input while 
maintaining the internal representation of the word. A countdown takes place to prepare the participant 
for the inner speech. 

• t = 0 s: A fixation cross (“+”) appears, signaling participants to maintain visual focus, remain still 
to avoid movement-related artifacts, and to initiate the inner speech of the previously presented lexical 
item. 

• t = 1.5 s: The fixation cross disappears, marking the end of the trial. Participants then remain in a 
passive resting state until the onset of the next trial. 

Each participant completes ten (10) repetitions per lexical item, with trial order fully randomized across 
the session. This randomization strategy mitigates potential order, anticipation, and adaptation effects 
that could otherwise bias neural responses. 
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RIEMANNIAN GEO METRY  
M O T I V A T I O N  
Investigating cross-language neural phenomena using EEG through the lens of Riemannian Geometry is 
motivated by both the complexity of multilingual brain representations and the limitations of traditional 
Euclidean analysis methods. EEG signals are inherently multivariate, non-stationary, and highly correlated 
across channels, properties that are naturally captured by covariance matrices rather than raw time-
domain features. These covariance matrices reside on a Riemannian manifold of symmetric positive-
definite matrices, where distances and averages are more meaningfully defined using Riemannian 
metrics. By operating directly on this manifold, Riemannian Geometry–based methods preserve the 
intrinsic structure of EEG data, enabling more robust comparisons across subjects, sessions, and, critically, 
languages. In the context of cross-language inner speech, such approaches offer a principled framework 
for disentangling language-specific neural patterns from language-invariant representations, facilitating 
transfer learning and cross-lingual decoding. This is particularly important for bilingual or multilingual 
scenarios, where neural variability induced by different phonological and semantic systems can obscure 
shared cognitive mechanisms. Leveraging Riemannian Geometry thus provides a mathematically 
grounded and empirically powerful means to study how the brain encodes inner speech across languages, 
advancing both neuroscientific understanding and the development of language-agnostic EEG-based 
brain–computer interfaces.  

M E T H O D O L O G I C A L  A P P R O A C H  
Let Xi ∈ RE×T ,i = 1,...,n be a multichannel EEG segment, where E denotes the number of electrodes, T the 
number of time samples and n the number of available segments (or trials). Each segment (assuming zero 

mean signals) can also be described by the corresponding spatial covariance matrix 𝐶𝑖 =
1

𝑇−1
𝑋𝑖𝑋𝑖

⊤ ∈

𝑅𝐸×𝐸, where (·)⊤ denotes the transpose operator. By definition and under a sufficiently large T value to 
guarantee a full rank covariance matrix, spatial covariance matrices are Symmetric Positive Definite (SPD) 
that lie on a Riemannian manifold instead of a vector space (e.g. scalar multiplication does not hold on 
the SPD manifold). In the field of differential geometry, a Riemannian manifold is a real, smooth manifold 
endowed with an inner product on the tangent space of each point that varies smoothly from point to 
point. 

When treating EEG data, the manifold of SPD matrices denoted by Sym+
E = {C ∈ RE×E : x⊤Cx > 0, for all non-

zero x ∈ RE}, is typically studied when it is equipped with the AIRM [Conney, 2020], 

 ⟨A,B⟩P≜ Trace(P−1AP−1B) (1) 

for P ∈ Sym+
E and 𝐴, 𝐵 ∈ 𝑇𝐸

+(𝑃), where 𝑇𝐸
+(𝑃) denotes the tangent space of Sym+

E at P. Then, the following 
geodesic distance is induced 

 𝛿(𝐶𝑖, 𝐶𝑗) = ‖𝑙𝑜𝑔𝑚 (𝐶𝑖
−1/2

𝐶𝑗𝐶𝑖
−1/2

) ‖𝐹 = √∑𝐸
𝑞=1 𝑙𝑜𝑔2𝜆𝑞 (2) 

where logm(·) denotes the matrix logarithm operator and λq the eigenvalues of the matrix Ci
−

 
1/2CjCi

−
 
1/2 or 

equivalently of the matrix Ci
-1Cj. We note that these two matrices are similar (i.e., hold the same 

eigenvalues) and that the indices i and j can be permuted. Among the other useful properties that are 
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discussed thoroughly in [Pennec, 2006], δ is congruent invariant for non-singular matrices W, i.e. 
δ(WCiW⊤,WCjW⊤) = δ(Ci,Cj). This is an important property in EEG signal processing since it provides 
equivalence between the sensor and the source space [Congedo, 2017]. According to the prevailing EEG 
model, the recorded activity is well approximated by a linear mixture of source signals. Hence, Xi = MSi 

with M denoting the mixing matrix and Si the source signals. Then, by substituting the observed signal with 

the equivalent mixing of sources, one may obtain the following covariance matrix, 𝐶𝑖 =
1

𝑇−1
𝑀𝑆𝑖𝑆𝑖

⊤𝑀𝑖
⊤. 

Therefore, the mixing procedure in the time domain results in a congruent transformation in the 
corresponding covariance matrices. It becomes obvious that since δ is invariant to such transformations, 
the two spaces are considered equivalent. In a strict mathematical sense this is partially true (e.g., for 
certain forms of M) and this topic is thoroughly discussed in [Congedo, 2017]. Hereafter, the terms “AIRM-
induced geodesic distance” or simply “geodesic distance” will be used interchangeably and will refer to 
Equation 2. 

C L U S T E R  E V A L U A T I O N  –  S I L H O U E T T E  
S C O R E  
The silhouette score [Shahapure, 2020] is a quantitative metric used to evaluate the quality of clustering 
by measuring how well each data point fits within its assigned cluster compared to other clusters. For a 
given sample, the silhouette value reflects the difference between the average distance to points within 
the same cluster (intra-cluster similarity) and the average distance to points in the nearest neighboring 
cluster (inter-cluster separation), normalized to lie between −1 and 1. Values close to 1 indicate that a 
sample is well matched to its own cluster and clearly separated from others, values near 0 suggest 
overlapping clusters, and negative values imply potential misclassification. When averaged across samples 
or clusters, the silhouette score provides an intuitive summary of cluster compactness and separability, 
making it particularly useful for assessing structure in neural data embeddings. 

R E S U L T S  

EEG-BASED INVESTIGATION OF WORDS’ MEANING  

In this section, we present the results of our analysis examining whether words with identical semantic 
meaning, internally articulated in Greek and English, elicit similar neural patterns as captured by EEG. 
Neural representations were modeled using covariance matrices and compared using the Affine Invariant 
Riemannian Metric (AIRM), which enables meaningful distance computations on the manifold of 
symmetric positive-definite matrices while preserving their intrinsic geometric structure. Pairwise 
Riemannian distances were subsequently embedded into a low-dimensional space using 
Multidimensional Scaling (MDS) to facilitate qualitative visualization of the relationships between inner 
speech representations across languages. The resulting embeddings allow for intuitive inspection of 
whether semantically equivalent words cluster together irrespective of language. To quantitatively assess 
the degree of clustering and separability, the silhouette score was employed, providing a measure of intra-
cluster compactness relative to inter-cluster separation. Together, the MDS visualizations and silhouette-
based evaluations offer complementary qualitative and quantitative evidence regarding the presence of 
shared, language-invariant neural patterns associated with inner speech of semantically identical words 
in Greek and English. 

All investigations presented below are conducted systematically across the common EEG frequency 
bands, namely delta, theta, alpha, beta, gamma, as well as the wideband range (1–145 Hz). For each band, 
the EEG signals are band-limited prior to covariance estimation, allowing the analysis to capture 
frequency-specific neural dynamics associated with inner speech processing. This multi-band approach 
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enables examination of whether cross-language similarities or separability in neural representations are 
driven by specific oscillatory components or are distributed across the broader spectral content of the 
signal. By evaluating the results consistently across canonical frequency bands and the wideband 
representation, we aim to provide a comprehensive and nuanced characterization of language-invariant 
and language-dependent neural patterns in inner speech. 

Table 3.1: Average Silhouette Score across all participants for each pair of the lexical items (i.e., 
‘Antenna’/‘Κεραία) across the common EEG frequency bands. 

Word-pair Delta Theta Alpha Beta Gamma WideBand 

'Antenna' -0.29 -0.39 -0.19 -0.31 -0.65 -0.47 

'Apple' 0.05 -0.25 -0.25 -0.15 -0.09 -0.44 

'Arrow' -0.24 -0.27 -0.24 -0.13 -0.46 -0.46 

'Belt' -0.15 -0.24 -0.22 -0.19 -0.49 -0.45 

'Button' -0.19 -0.26 -0.14 -0.16 -0.37 -0.44 

'Candle' -0.33 -0.21 -0.27 -0.34 -0.58 -0.25 

'Compass' -0.31 -0.19 -0.29 -0.32 -0.50 -0.18 

'Dice' -0.25 -0.38 -0.28 -0.061 -0.29 -0.35 

'Feather' -0.20 -0.22 -0.23 -0.26 -0.51 -0.38 

'Guitar' -0.30 -0.22 -0.22 -0.29 -0.51 -0.16 

'Pencil' -0.21 -0.29 -0.15 -0.35 -0.53 -0.51 

'Plate' -0.29 -0.26 -0.24 -0.26 -0.46 -0.30 

'Saddle' -0.32 -0.14 -0.34 -0.42 -0.08 -0.58 

'Vehicle' -0.15 -0.25 0.03 -0.25 -0.59 -0.31 

'Wheel' -0.26 -0.19 -0.31 -0.22 -0.46 -0.35 

 

Table 1 reports the average silhouette scores, aggregated across all participants, for each pair of 
semantically identical lexical items internally articulated in English and Greek (e.g., “Antenna”/“Κεραία”) 
across the common EEG frequency bands. Overall, the silhouette values are predominantly negative 
across words and frequency ranges, indicating substantial overlap between the neural representations of 
English and Greek inner speech not only for the same semantic concepts but also for discrete ones. This 
pattern suggests that, for most lexical items, trials corresponding to the two languages do not form well-
separated clusters in the Riemannian space but instead exhibit considerable similarity across several 
semantic concepts. Among the examined bands, the gamma and wideband ranges tend to yield the most 
negative scores, pointing to increased intermixing of language-specific representations at higher 
frequencies and in broadband activity. In contrast, slightly higher (though still near-zero or negative) 
silhouette values are observed in the delta, theta, and alpha bands for some words (e.g., “Apple” and 
“Vehicle” in the alpha band), hinting at limited frequency-dependent variation in cross-language settings. 
Taken together, these results provide quantitative evidence that inner speech of semantically equivalent 
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words in Greek and English elicits largely overlapping neural patterns across several concepts, with only 
modest and inconsistent differentiation across frequency bands.  

The aforementioned become evident by the following indicative image which visualizes the Riemannian 
Space of the single trials for a random participant (i.e., S06) using wideband EEG signals. 

 

Figure 3.1: 2-dimensional representation for the wide-band single trial responses of S06 using 
MDS under the Affine Invariant Riemannian Metric. 

 

EEG-BASED INVESTIGATION OF LANGUAGE 

In this section, we present results assessing whether internally articulated Greek and English words form 
distinct neural representations that can be reliably separated using EEG. As in the previous analysis, trial-
wise covariance matrices were compared using the Affine Invariant Riemannian Metric (AIRM), enabling 
robust distance estimation on the Riemannian manifold of symmetric positive-definite matrices. These 
pairwise distances were projected into a low-dimensional space via Multidimensional Scaling (MDS) to 
provide a visual assessment of language-specific structure in the data. The MDS embeddings were 
examined to determine whether trials corresponding to Greek and English inner speech occupy separable 
regions of the representational space. To complement the qualitative visualization, silhouette scores were 
computed using language labels to quantitatively evaluate cluster separability, with higher scores 
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indicating stronger within-language cohesion and clearer between-language separation. This combined 
geometric, visual, and quantitative analysis provides insight into the extent to which inner speech in Greek 
and English gives rise to distinguishable neural patterns, shedding light on language-dependent encoding 
mechanisms in the brain. 

As in the pervious subsection, all analyses presented are performed across standard EEG frequency 
ranges, including the delta, theta, alpha, beta, and gamma bands, in addition to a broadband 
representation spanning 1–145 Hz. Prior to covariance computation, the EEG data are filtered to isolate 
each frequency band, enabling the investigation of neural activity specific to distinct oscillatory processes 
involved in inner speech. This band-wise analysis allows us to determine whether observed cross-language 
similarities or distinctions in neural patterns emerge from particular frequency components or reflect 
more global spectral characteristics. 

Table 3.2: Average Silhouette Score across all participants for Greek and English words (i.e., each lexical 
item is assigned to its language cluster) across the common EEG frequency bands. 

Freq. Band English Greek 

Delta 0.08 -0.08 

Theta 0.11 -0.11 

Alpha 0.004 -0.007 

Beta 0.06 -0.06 

Gamma 0.13 -0.13 

Wide Band (1-145) -0.03 0.03 

 

Table 2 summarizes the average silhouette scores across all participants when lexical items are grouped 
according to language, with English and Greek words assigned to separate clusters, across the common 
EEG frequency bands. In contrast to the word-pair analysis, the results reveal a modest but consistent 
tendency toward language-based separability in several frequency ranges. Positive silhouette scores for 
the English cluster in the delta, theta, beta, and gamma bands (ranging from 0.06 to 0.13) indicate mild 
within-language cohesion and some degree of separation from Greek words, while the corresponding 
negative values for the Greek cluster reflect the complementary nature of the silhouette metric in a two-
cluster setting. The gamma band exhibits the highest absolute silhouette magnitude, suggesting that 
higher-frequency activity may contribute more strongly to language-specific differentiation during inner 
speech. Conversely, the alpha band shows near-zero scores for both languages, implying substantial 
overlap and minimal language-dependent structure in this frequency range. In the wideband condition, 
silhouette values are close to zero for both clusters, indicating limited overall separability when 
broadband information is considered. Overall, these findings suggest that while inner speech 
representations in Greek and English are largely overlapping, subtle language-related distinctions emerge 
in specific frequency bands, particularly at higher frequencies. 

In the image bellow we provide an indicative image which visualizes the Riemannian Space of the single 
trials for a random participant (i.e., S06) using EEG signals filtered in gamma frequency band (signals 
grouped according to language). 
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Figure 3.2: 2-dimensional representation for the gamma filtered single trial responses of S06 
using MDS under the Affine Invariant Riemannian Metric when signals are colored according to 
language (Greek vs English). 
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SPECTRO -TE MPORAL 
NEURAL  S IMILAT IRY  AND 
DIVERGENCE  IN  GREEK –
ENGLI SH WORD PAIRS  
M O T I V A T I O N  
Inner speech is widely assumed to rely on abstract, language-independent representations that precede 
overt articulation. However, direct empirical evidence supporting this assumption, particularly at the level 
of individual lexical items across languages, remains limited. Bilingual inner speech provides a unique 
opportunity to address this question: if two words share the same meaning but differ in their phonological 
and articulatory realization, to what extent do their neural representations overlap during covert 
production? 

To investigate this, we examined pairs of semantically equivalent words in Greek and English (e.g., dice–
ζάρι, arrow-βέλος). This analysis was enabled by the newly acquired dataset generated within the BINGO 
project, comprising EEG recordings associated with English and Greek words of equivalent semantic 
meaning (see Deliverable D3.1 v2 for a detailed description). These word pairs allow a controlled 
dissociation between shared conceptual content and language-specific phonological form, making them 
ideal for probing whether inner speech is primarily driven by meaning or by language-dependent encoding 
mechanisms. 

Our central hypothesis was that inner speech representations would be largely similar across languages, 
reflecting shared conceptual and motor planning processes, with selective divergences emerging for 
words that differ more strongly in phonological structure or articulatory complexity. 

 

M E T H O D O L O G Y :  P A I R W I S E  T I M E  –  
F R E Q U E N C Y  D I S C R I M I N A T I O N  O F  I N N E R  
S P E E C H  

EEG REPRESENTATION AND TIME–FREQUENCY ANALYSIS 

EEG data were recorded during silent articulation of visually presented words. For each trial, the EEG 
signal from sensor 𝑠was transformed into the time–frequency domain using a continuous wavelet 
transform (CWT) [Herrmann, 2005]: 

𝑊𝑠(𝑓, 𝑡, 𝑘) =∣ CWT(𝑧(𝑥𝑠(𝑡, 𝑘))) ∣ 
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where 𝑓denotes frequency, 𝑡time, 𝑘trial index, and 𝑧(⋅)indicates z-score normalization. The analysis 
focused on frequencies between 1–45 Hz and a post-stimulus window of 2.5–4 s, selected to emphasize 
sustained inner speech generation. 

CROSS-LANGUAGE WORD-PAIR DISCRIMINATION 

For each Greek–English word pair 𝑐, a binary discrimination analysis was performed by contrasting trials 
corresponding to the English word against trials of its Greek counterpart. At each sensor and time–
frequency bin, trials were vectorized and evaluated using a non-parametric Wilcoxon rank-sum–based 
feature ranking. This yielded a discriminability score: 

𝑍𝑠
(𝑐)

(𝑓, 𝑡) 
which quantifies the statistical separability between the two languages for word pair 𝑐at sensor 𝑠. 

 

SENSOR-LEVEL WORD AND FREQUENCY DISCRIMINABILITY METRICS  

To obtain interpretable sensor-level summaries, discriminative maps were aggregated in two 
complementary ways. 

Word-Level Discriminability: For each sensor and class (word, language set, or word pair), discriminability 
scores were averaged across frequencies and across the selected temporal window (0 - 1.5 s). The 
maximum discriminability value across classes was retained: 

WordScore(𝑠, 𝑐) = max 
𝑐

(
1

𝑇
∑

1

𝐹
𝑡∈[0,   1.5]

∑ 𝑍𝑠
(𝑐)

𝑓

(𝑓, 𝑡)) 

 

This metric quantifies the contribution of each sensor to distinguishing specific lexical items, language 
sets, or cross-linguistic word pairs during inner speech. 

Frequency-Level Discriminability: To identify informative spectral components, discriminability scores 
were averaged across time and classes, and the maximum value per frequency band was retained: 

This measure highlights sensor-dependent frequency bands that are most sensitive to language and word-
level distinctions in covert speech. 

VISUALIZATION AND INTERPRETATION 

The resulting discriminability metrics were visualized as sensor-by-class and sensor-by-frequency 
heatmaps. These visualizations provide insight into: 

1. Spatial patterns of EEG sensors contributing to inner speech discrimination. 

2. Spectral signatures differentiating languages and semantically equivalent cross-linguistic word 

representations. 

3. The extent to which inner speech representations are shared or distinct across languages. 

This analysis was conducted independently for each subject, and the resulting discriminability maps were 
subsequently averaged across the 20 subjects to obtain group-level representations. 
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R E S U L T S  A N D  A N A L Y S I S :  S H A R E D  
R E P R E S E N T A T I O N S  W I T H  S E L E C T I V E  
L A N G U A G E - S P E C I F I C  M O D U L A T I O N  

LEXICAL-LEVEL CROSS-LANGUAGE SIMILARITY  

Figure 4.1a summarizes sensor-level discriminability scores for all Greek–English word pairs, averaged 
across subjects. Lower values indicate stronger similarity between the two languages, whereas higher 
values reflect increased divergence. 

 

Figure 4.3: a) Pairwise word discrimination for all the available cross-linguistic word pairs averaged across 
subjects. b) Frequency related discrimination for each sensor averaged for all subjects and pair of words. 

The dominant pattern in Figure 4.1a is one of widespread cross-language similarity: most word pairs 
exhibit low discriminability across nearly all sensors. This suggests that, for the majority of lexical items, 
inner speech representations are largely language-invariant, reflecting shared conceptual and motor 
planning processes rather than language-specific phonological form. This effect is spatially widespread 
and not restricted to a specific scalp region, suggesting that language-independent neural mechanisms 
dominate inner speech generation at the lexical–semantic level. 

This finding aligns well with theoretical models of inner speech that posit a shared conceptual and 
articulatory planning stage preceding phonological encoding [Correja, 2015]. Since both words in each 
pair share the same meaning and communicative intent, the observed similarity likely reflects concept-
driven neural activation, rather than language-specific surface forms. 

In particular, word pairs such as apple (μήλο), button (κουμπί), plate (πιάτο), vehicle (όχημα), and wheel 
(ρόδα) show consistently low discriminability across frontal, central, and parietal sensors. These items 
correspond to highly concrete, visually grounded, and conceptually stable objects, for which semantic 
representations are expected to be robust and language-invariant [Li, 2023]. The neural similarity suggests 
that inner speech for these items may rely more heavily on shared conceptual imagery and motor planning 
than on language-specific phonological encoding. 
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Individual-Level Robustness and Selective Deviations: Importantly, the analysis underlying Figure 4.1a 
was also performed at the individual-subject level, revealing that the observed group-level trends are 
highly consistent across participants. Most subjects exhibited low discriminability for the same word pairs, 
confirming that the similarity is not an artifact of averaging. 

At the same time, individual analyses revealed subject-specific divergences. For example, the word pair 
antenna (κεραία) showed increased discriminability in subject S7, particularly over fronto-central sensors. 
Such effects were not uniform across subjects, indicating that language-specific inner speech 
representations can emerge idiosyncratically, potentially due to differences in bilingual proficiency, 
articulatory strategies, or imagery-based encoding. 

Word Pairs with Systematic Cross-Language Divergence: A limited set of word pairs, including arrow 
(βέλος), dice (ζάρι), compass (πυξίδα), and guitar (κιθάρα), exhibited consistently higher discriminability 
across subjects and sensors (Figure 4.1a). These differences were most pronounced over fronto-central 
and central electrodes, implicating brain regions involved in speech motor planning and articulatory 
rehearsal. 

These findings suggest that, while semantic representations remain shared, phonological and articulatory 
differences between Greek and English introduce measurable neural divergence for words with more 
complex or language-specific phonetic structure. 

Oscillatory Signatures of Inner Speech: Figure 4.1b depicts frequency-specific discriminability scores 
averaged across word pairs and subjects, highlighting the oscillatory components most relevant to inner 
speech. 

Discriminative information is concentrated in a restricted set of frequency bands: 

• Theta band (4–7 Hz) over frontal and fronto-central sensors, associated with working memory, 

lexical selection, and internal speech rehearsal. 

• Alpha band (8–12 Hz) over central and parietal sensors, reflecting internally oriented attention 

and suppression of overt sensory–motor output. 

• Low beta band (13–20 Hz) localized over central electrodes (C3, Cz, C4), consistent with covert 

engagement of speech motor planning networks. 

 

INTERPRETATION AND RELEVANCE 

Taken together, the spectral results indicate that inner speech is supported by a compact and 
interpretable oscillatory network, dominated by frontal theta, central–parietal alpha, and focal central 
beta activity. The absence of strong high-frequency effects suggests that inner speech decoding in EEG is 
primarily driven by low- and mid-frequency oscillations, which encode cognitive control, attentional 
gating, and covert motor planning. 

Summarizing, The Greek–English word-pair analysis demonstrates that inner speech is characterized by 
strong cross-linguistic neural similarity, both at the group and individual levels. Language-specific 
differences emerge selectively and are primarily driven by phonological and articulatory factors, 
manifesting in fronto-central motor-related regions and low- to mid-frequency oscillations. 

These findings support a model of inner speech in which semantic and conceptual representations 
dominate, while language modulates neural activity at later, motor-oriented stages. The consistency 
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across subjects, combined with selective individual deviations, highlights inner speech as a stable yet 
flexible neural process.  
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CONCLUSION  
This deliverable investigated cross-linguistic phenomena of inner speech using EEG through 
complementary Riemannian geometry–based and spectro-temporal analysis approaches. While the 
applied methodologies provided a structured and principled framework for examining language-
dependent and language-invariant neural representations, the results did not reveal strong or consistent 
evidence of robust cross-linguistic differentiation or convergence across the examined frequency bands 
and analytical perspectives. Overall, the observed patterns suggest substantial overlap in neural 
representations of inner speech across languages, with only modest and variable effects that do not allow 
for definitive conclusions. 

These findings highlight both the inherent complexity of inner speech processes and the challenges 
associated with detecting subtle cross-language neural signatures using non-invasive EEG recordings. 
Consequently, further work is required to better characterize cross-linguistic inner speech 
representations. Future investigations may benefit from larger participant cohorts, expanded lexical sets, 
refined experimental paradigms, and the integration of additional analytical methods or multimodal 
neuroimaging data. Such efforts are expected to improve sensitivity and robustness, ultimately advancing 
our understanding of how inner speech is encoded across languages in the human brain. 
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