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Executive Summary: This deliverable investigates EEG-based imagined speech decoding within the 
BINGO project, aiming to assess decoding performance under varying levels of task complexity and 
generalization. EEG data were collected from 20 participants over three sessions, using a 26-word 
vocabulary based on the NATO phonetic alphabet. Multiple evaluation protocols were employed, 
including within-session and cross-session subject-dependent experiments, as well as subject-
independent evaluations using leave-one-subject-out and Monte Carlo cross-validation. 
 
Two deep learning architectures were examined: EEGNet, serving as a compact baseline model, and an 
EEG Conformer, which integrates convolutional layers with self-attention mechanisms. Results show 
that decoding performance is highest in within-session settings, decreases in cross-session evaluations, 
and approaches chance level under subject-independent conditions. Reduced-vocabulary experiments 
yield more stable performance for both models. Overall, the EEG Conformer consistently matches or 
slightly outperforms EEGNet, particularly in more challenging evaluation scenarios, while absolute 
performance highlights the persistent difficulty of imagined speech decoding from EEG signals. The 
code for the methodologies described in this report are available at the project’s code repository. 
 
The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made of 
the information contained therein. The information in this document is provided as is and no guarantee or warranty is given that the 
information is fit for any particular purpose.  The user thereof uses the information at its sole risk and liability. 
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1 .  I N T R O D U C T I O N  
 
Imagined speech, also referred to as inner speech, describes the internal generation of words without any 
overt articulation. It is a common cognitive process that accompanies thinking, planning, and language-
related activities. From an applied perspective, imagined speech has attracted increasing attention in 
brain–computer interface (BCI) research, particularly in relation to communication support for individuals 
with severe speech or motor impairments. 

Previous studies have shown that imagined speech involves neural activity in frontal, temporal, and 
sensorimotor areas. This activity is typically distributed both spatially and temporally and is not associated 
with strong, time-locked responses. As a result, EEG signals recorded during imagined speech tasks tend 
to have a low signal-to-noise ratio and are sensitive to session-related and inter-subject differences. These 
properties complicate the design of reliable decoding models. 

Recent work has increasingly explored deep learning approaches for EEG-based decoding. Convolutional 
neural networks have been used to learn temporal and spatial representations directly from EEG signals, 
reducing the need for handcrafted features. More recently, attention-based architectures have been 
introduced to capture longer temporal dependencies. While these methods have shown promising 
results, performance often depends strongly on the evaluation protocol and the degree of subject 
specificity. 

In many studies, evaluation is performed under subject-dependent conditions, where training and testing 
data originate from the same participant. Subject-independent evaluation, where models are applied to 
unseen users, remains considerably more difficult and is therefore essential for practical BCI applications. 
In addition, task complexity, such as vocabulary size, has a direct impact on decoding performance and 
should be explicitly considered. 

In this document, imagined speech decoding is investigated using EEG data collected during a multi-
session experiment with a 26-word vocabulary based on the NATO (North Atlantic Treaty Organization) 
phonetic alphabet. The experimental protocol includes recordings over three days per participant, 
allowing evaluation under both stable and variable conditions. Several evaluation strategies are 
employed, including within-session and cross-session subject-dependent experiments, as well as subject-
independent settings using leave-one-subject-out and Monte Carlo cross-validation. 

Two neural network models are examined. EEGNet is used as a compact baseline architecture designed 
specifically for EEG classification tasks. In addition, an EEG Conformer model is evaluated, which combines 
convolutional layers with self-attention mechanisms to model both local and long-range temporal 
structure. Both models are trained and evaluated using the same preprocessing pipeline and evaluation 
protocols, enabling a direct comparison of their performance across different experimental conditions. 

The aim of this work is to assess imagined speech decoding performance across varying levels of 
generalization. By considering multiple evaluation paradigms and two complementary architectures, this 
deliverable provides a structured analysis of the challenges associated with EEG-based imagined speech 
decoding. It is noted that the code for the methodologies described in this report are available at the 
project’s code repository https://github.com/BINGO-BCI and will constitute a part of project’s toolbox.  

https://github.com/BINGO-BCI
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2 .  B I N G O  D A T A S E T  
 
The dataset comprises Electroencephalogram (EEG) recordings collected from 20 participants  during a 
controlled imagined speech experiment conducted in CERTH EEG laboratory (for details you may refer to 
D3.1 v2). After signing a consent form, each participant attended three experimental sessions on three 
separate days, following an identical protocol designed to elicit neural activity associated with covert 
speech production. 
 
The imagined speech vocabulary consisted of 26 words derived from the NATO phonetic alphabet. To 
manage task complexity and participant fatigue, the vocabulary was distributed across the first two 
experimental sessions. During the first session, participants were instructed to imagine the pronunciation 
of the first 13 words (Alpha, Bravo, Charlie, Delta, Echo, Foxtrot, Golf, Hotel, India, Juliett, Kilo, Lima, Mike), 
with each word repeated 35 times, resulting in 455 trials per participant. The second session followed the 
same structure and repetition scheme, focusing on the remaining 13 words (November, Oscar, Papa, 
Quebec, Sierra, Tango, Uniform, Victor, Whiskey, X-Ray, Yankee, Zulu), again yielding 455 trials per 
participant. In the third session, participants imagined the full vocabulary of 26 words, each repeated 10 
times, leading to 260 trials per participant. Across all sessions, each subject contributed a total of 1,170 
imagined speech trials. 
 
Each trial followed a fixed temporal structure with a total duration of 4 seconds. At the beginning of the 
trial, the target word was visually presented on the screen. This was followed by a brief preparation phase, 
indicated by the sequential appearance of three dots, and subsequently by a fixation cross serving as the 
cue for task onset. Immediately after the fixation cross, participants were given a 1.5-second interval 
during which they were instructed to imagine pronouncing the displayed word once internally. Subjects 
were explicitly instructed to avoid any overt speech, facial movements, or motor actions throughout the 
experiment, ensuring that the recorded EEG signals predominantly reflected neural processes related to 
imagined speech rather than muscle activity. 
 
EEG data were acquired using the DSI-24 EEG device by Wearable Sensing [Wearable Sensing, DSI-24]. 
Recordings were performed at a sampling frequency of 300 Hz using 21 electrodes positioned according 
to the International 10–20 System. The electrode montage included the channels Fp1, Fp2, Fz, F3, F4, F7, 
F8, Cz, C3, C4, T3, T4, Pz, P3, P4, T5, T6, O1, O2, A1, and A2. The A1 and A2 electrodes were placed on the 
mastoid bones and served as reference electrodes. Prior to the experimental procedure, electrode 
impedances were maintained below 10 kΩ for all channels, and the EEG signals were visually inspected to 
ensure signal quality and to identify any anomalies before data acquisition. 
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3 .  E V A L U A T I O N  
A P P R O A C H E S  

 
To evaluate the performance of the imagined speech decoding models under different levels of difficulty 
and generalization, both subject-dependent and subject-independent evaluation paradigms were 
adopted. These evaluation settings are commonly used in EEG-based machine learning studies, as they 
allow performance to be examined under controlled conditions as well as in scenarios that better reflect 
real-world deployment.  
 

3 . 1  S U B J E C T - D E P E N D E N T  
In the subject-dependent evaluation, training and testing data originate from the same participant, 
thereby removing inter-subject variability and providing an estimate of the best achievable performance 
for a given individual. Two complementary subject-dependent scenarios were considered. 
 

WITHIN-SESSION 
First, a within-session (within-day) evaluation was carried out using data from either Day 1 or Day 2 
independently. Since each of these sessions involved only half of the vocabulary, the task was formulated 
as a 13-class classification problem. For each subject, 30 trials per class were used for training, and 5 trials 
per class were reserved for testing. This setting was selected to assess decoding performance under highly 
stable recording conditions, where temporal variability is minimal, and is typically used as a baseline 
benchmark in imagined speech and EEG classification studies. 
 

CROSS-SESSION 
Second, a cross-session subject-dependent evaluation was performed to investigate how well the models 
generalize across different recording days. In this configuration, data from Day 1 and Day 2 were used for 
training, while data from Day 3 were used exclusively for testing. As the third session included the 
complete vocabulary, this setting resulted in a 26-class classification task. This evaluation scenario was 
designed to capture session-to-session variability, while still maintaining a subject-specific training 
framework. 
 
 

3 . 2  S U B J E C T - I N D E P E N D E N T  
The subject-independent evaluation aimed to assess model generalization across participants, which 
represents a substantially more challenging and practically relevant scenario. In this setting, models are 
required to decode imagined speech from users whose data were not seen during training, either entirely 
(as in leave-one-subject-out cross-validation) or partially through subject-independent train-test splits (as 
in Monte Carlo cross-validation). 
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LEAVE-ONE-SUBJECT-OUT CROSS-VALIDATION (LOSO-CV)  
The primary subject-independent evaluation employed a leave-one-subject-out cross-validation (LOSO-
CV) strategy. Data from all days and all but one subject were used for training, while the held-out subject’s 
data were used for testing. This resulted in a 26-class classification problem and provided a rigorous 
assessment of inter-subject generalization. LOSO-CV is widely regarded as a standard benchmark in EEG 
decoding studies, as it closely reflects real-world use cases in which subject-specific calibration data may 
not be available. 
 

MONTE CARLO CROSS-VALIDATION (MC-CV) 
In addition, a reduced-vocabulary subject-independent evaluation was conducted using data from Day 1 
across all subjects. In this setting, the task involved 13 classes, corresponding to the vocabulary presented 
on the selected day. For each subject, 500 trials were randomly selected for training, while 85 trials were 
held out for testing. To ensure robust performance estimation, this random train-test split was repeated 
500 times, following a Monte Carlo cross-validation (MC-CV) scheme. This evaluation setup was included 
to examine subject-independent performance under a reduced vocabulary and to decrease classification 
complexity. 
 
Taken together, these evaluation scenarios provide a balanced and comprehensive assessment of 
imagined speech decoding performance, spanning controlled subject-specific conditions, cross-session 
robustness, and subject-independent generalization, while also accounting for the effect of vocabulary 
size on classification difficulty. 

3 . 3  A  N O V E L  E V A L U A T I O N  M E T R I C  
 
In traditional classification tasks, accuracy is calculated by dividing the number of correctly classified 
samples by the total number of samples. However, this approach treats all classes equally, failing to 
consider that some classes may be more important or difficult than others, which could lead to misleading 
conclusions when evaluating model performance. For example, in our imagined speech classification 
experiment, each class corresponds to a letter. However, not all letters are equally significant or difficult 
to classify. Some classes may be harder to classify (e.g., infrequent letters), or certain classes may hold 
more importance for the application (e.g., letters that are more commonly used). 
 
In this study, we introduced the Weighted Accuracy as a novel evaluation metric designed to account for 
the relative importance or contribution of each class in a multi-class classification task. This metric is 
calculated as the weighted average of the per-class accuracies, where the weight assigned to each class 
reflects its relative importance or significance in the context of this task (Table 3.1).  
 
The Total Weighted Accuracy is computed as: 
 

𝑇𝑜𝑡𝑎𝑙 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  ∑ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 ∗ 𝑊𝑒𝑖𝑔ℎ𝑡𝑖

𝑛

𝑖=1

 

 
 

where 𝑛 is the number of classes (23 or 13 in this case), 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 is the classification accuracy for class 𝑖 
, 𝑖 is the 𝑊𝑒𝑖𝑔ℎ𝑡 assigned to class 𝑖, representing its importance. 
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Table 1 Letters and their corresponding significance Weights. 

 

Letter Weight 

A 0.0817 

B 0.0149 

C 0.0278 

D 0.0425 

E 0.127 

F 0.0223 

G 0.0202 

H 0.0609 

I 0.0697 

J 0.0015 

K 0.0077 

L 0.0403 

M 0.0241 

N 0.0675 

O 0.0751 

P 0.0193 

Q 0.001 

R 0.0599 

S 0.0633 

T 0.0906 

U 0.0276 

V 0.0098 

W 0.0236 

X 0.0015 

Y 0.0197 

Z 0.0007 

 
Sum 

 
1.0002 

  



 

Page | 12 

 

4 .  E E G N E T  
4 . 1  M O T I V A T I O N  
 
Imagined speech decoding from EEG signals remains a challenging problem, largely due to the subtle and 
distributed nature of the underlying neural activity. Neurophysiological studies suggest that imagined 
speech engages a network of frontal, temporal, and motor-related regions, with activity patterns that are 
distributed across multiple frequency bands rather than confined to a single oscillatory rhythm [Cooney 
et al., 2018; Martin et al., 2014]. These characteristics motivate the use of learning approaches that can 
capture spatiotemporal structure while remaining robust to noise and inter-trial variability. 
 
EEGNet [Lawhern et al., 2018] was selected in this work as a suitable baseline architecture as it was 
explicitly designed for EEG-based classification tasks and incorporates architectural constraints that 
reflect common properties of EEG signals. Rather than relying on extensive manual feature extraction, 
EEGNet supports end-to-end learning, allowing task-relevant temporal and spatial patterns to be learned 
directly from the data. This is particularly appropriate in the context of imagined speech, where the 
precise neural markers are not yet fully understood and may vary across subjects and sessions. 
 
The temporal convolutional layers employed in EEGNet can be interpreted as data-driven temporal filters, 
enabling the model to emphasize temporal (spanning across various frequencies) components that are 
informative for the task. This aligns with prior findings indicating that imagined speech-related activity 
may involve contributions from multiple frequency ranges, including theta, alpha, beta, and low gamma 
bands, depending on task design and cognitive strategy [Brigham & Kumar, 2010; Sereshkeh et al., 2019]. 
By learning such representations implicitly, EEGNet avoids assumptions about fixed frequency bands and 
allows the model to adapt to the characteristics of the recorded data. In addition, EEGNet employs 
depthwise spatial convolutions that model relationships across EEG channels while maintaining a 
relatively small number of trainable parameters.  From a methodological perspective, EEGNet is widely 
used as a reference architecture in EEG-based BCI research. Its inclusion in this study facilitates 
comparison with prior work and provides a well-established baseline for systematic evaluation under both 
subject-dependent and subject-independent settings. 
 

4 . 2  M E T H O D O L O G Y  
 

PREPROCESSING 
The EEG signals were initially bandpass filtered between 1 and 145 Hz using a 3rd-order Butterworth filter 
to remove slow drifts and out-of-band noise. A 50 Hz notch filter was applied to suppress power-line 
interference. To further improve signal quality, Artifact Subspace Reconstruction (ASR) [Kothe & Jung, 
2016] was employed to attenuate transient, high-variance artifacts while preserving the underlying neural 
activity. 
 
Prior to model training, the EEG data were normalized using z-score standardization in order to reduce 
inter-channel amplitude variability and improve numerical stability during learning. Normalization was 
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performed in a training-aware manner to prevent information leakage from the test data into the training 
process. For each evaluation split, the dataset was first divided into training and testing subsets. The 
normalization parameters were then computed exclusively on the training data. Specifically, for each EEG 
channel, the mean and variance were calculated across all training trials and all time samples. These 
channel-wise statistics were subsequently used to standardize both the training and testing data. 
 

Given training data 𝑋𝑡𝑟𝑎𝑖𝑛 ∈ ℝ𝑁𝑡𝑟𝑥𝐶𝑥𝑇 and testing data 𝑋𝑡𝑒𝑠𝑡 ∈ ℝ𝑁𝑡𝑒𝑥𝐶𝑥𝑇, where 𝑁𝑡𝑟 and 𝑁𝑡𝑒 are the 
number of train and test trials, respectively, 𝐶 are the electrode channels, and 𝑇 denotes the time 
samples, the mean and variance were computed per channel by averaging over the trial and temporal 
dimensions. The resulting parameters were then applied to normalize the data as: 
 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝜇

√𝜎2
 

 
where 𝜇 and 𝜎2 denote the channel-wise mean and variance estimated from the training set. By using 
statistics derived solely from the training data, this preprocessing strategy ensures a fair evaluation and 
avoids bias in both subject-dependent and subject-independent settings. This normalization procedure 
was applied consistently across all experiments and evaluation scenarios. 
 

NETWORK ARCHITECTURE 
The proposed architecture is an end-to-end trainable deep neural network based on EEGNet (Figure 4.1), 
specifically designed for efficient decoding of imagined speech from EEG signals. Below, we describe the 
main components of the network used for imagined speech decoding: 
 

• Temporal convolutional layer 
The first layer applies convolutional temporal filters implemented as 2D convolutions with kernel size 

(1,
𝑓𝑠

2
), where 𝑓𝑠 denotes the sampling frequency. These filters act as learnable band-pass filters, extracting 

frequency-specific temporal patterns from the EEG signals while preserving the channel dimension. This 
layer is followed by batch normalization to stabilize training. 
 

• Depthwise spatial convolution 
To model spatial relationships across EEG channels, a depthwise convolution is applied with kernel size 
(C, 1), where C is the number of EEG channels. This operation learns spatial filters independently for each 
temporal feature map, effectively capturing channel-wise dependencies. The depthwise convolution is 
followed by batch normalization, a non-linear activation function (ReLU or ELU), average pooling with 
kernel size (1, 4), and dropout with probability 0.5 to reduce overfitting. 
 

• Separable convolutional layer 
Next, a separable convolution is employed, consisting of a depthwise temporal convolution followed by a 
pointwise convolution. This layer further refines the extracted features by jointly modeling temporal 
dynamics and inter-feature interactions, while maintaining a low parameter count. As before, batch 
normalization, non-linearity, average pooling, and dropout are applied. 
 

• Feature aggregation and classification 
The resulting feature maps are flattened and passed to a fully connected linear layer that produces the 
final class scores corresponding to the imagined speech categories. The entire network is trained end-to-
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end using backpropagation, enabling joint optimization of temporal, spatial, and discriminative features 
directly from raw EEG signals. 

 
Overall, EEGNet provides an efficient and interpretable architecture that leverages biologically meaningful 
constraints while remaining computationally lightweight, making it well suited for imagined speech 
decoding tasks with limited training data. 
 

 
Fig. 4.1 The EEGNet architecture. The network starts with a temporal convolution (second column), then uses a 
depthwise convolution (middle column). The separable convolution (fourth column) is a combination of a depthwise 
convolution, followed by a pointwise convolution. Image source: [Lawhern et al., 2018] 

 

4 . 3  R E S U L T S  
 

SUBJECT-DEPENDENT 
A systematic hyperparameter search was conducted using 5-fold stratified cross-validation on the 
complete training set, which consisted of 30 trials per class. The goal of this procedure was to identify the 
optimal learning configuration for the EEGNet model while ensuring robust performance estimation 
across folds. The hyperparameter search explored a small set of AdamW configurations, focusing on two 
learning rates and combined with light to no L2 regularization. For each configuration, a 5-fold stratified 
cross-validation scheme was applied to preserve class balance across folds. In each fold, the training set 
was further split into fold-specific training and validation subsets.  
 
An EEGNet architecture was trained using the EEGClassifier framework with a cross-entropy loss function 
and the AdamW optimizer. Training was performed for a maximum of 200 epochs with a batch size of 64. 
Early stopping was employed based on the validation loss, with a patience of 10 epochs, to prevent 
overfitting. Classification accuracy was monitored throughout training. For each fold, the validation 
accuracy and the number of training epochs until convergence were recorded. After completing the five 



 

Page | 15 

folds, the mean validation accuracy, standard deviation, and mean number of epochs were computed for 
each hyperparameter configuration. The configuration yielding the highest mean cross-validation 
accuracy was selected as the optimal setting. Using the best-performing hyperparameter configuration, a 
final EEGNet model was trained on the entire training dataset (30 trials per class). The number of training 
epochs was fixed to the mean number of epochs observed during cross-validation for the selected 
configuration, ensuring consistency between the optimization and final training stages. The trained model 
was subsequently evaluated on an independent held-out test set consisting of 5 trials per class. Model 
performance was quantified using overall classification accuracy, computed as the percentage of correctly 
predicted labels across all test samples. 
 
 

WITHIN-SESSION (13-CLASS) 
 
DAY1 
Figure 4.2 shows the classification accuracy per subject for EEGNet on Day 1. The overall mean accuracy 
across subjects is 7.31%, slightly below the theoretical chance level of 7.7%, with noticeable inter-subject 
variability. The corresponding weighted accuracy (Figure 4.4) yields an overall mean of 0.32, indicating 
that performance is unevenly distributed across classes, with higher-weighted letters contributing more 
strongly to the final score. 
 
 

 
Fig. 4.2 EEGNet classification accuracy per subject for DAY1. 
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Fig. 4.3 EEGNet classification accuracy per class across all subjects for DAY1. 
 
 
 

 
Fig. 4.4 EEGNet classification accuracy weighted by letter importance per subject for DAY1. 
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Fig. 4.5 EEGNet classification accuracy weighted by letter importance per class across subjects for DAY1. 
 
 
 
DAY 2 
As shown in Figure 4.6, the overall mean accuracy on Day 2 decreases to 6.38%, with a mean weighted 
accuracy of 0.21 (Figure 4.8). Compared to Day 1, both accuracy and weighted accuracy are reduced, 
suggesting increased variability or reduced consistency in imagined speech representations across 
sessions. 
 

 
Fig. 4.6 EEGNet classification accuracy per subject for DAY2. 
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Fig. 4.7 EEGNet classification accuracy per class across subjects for DAY2. 

 
 
 
 

 
Fig. 4.8 EEGNet classification accuracy weighted by letter importance per subject for DAY2. 
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Fig. 4.9 EEGNet classification accuracy weighted by letter importance per class across subjects for DAY2. 

CROSS-SESSION (26-CLASS) 
 
Figure 4.10 illustrates EEGNet performance when training on Days 1–2 and testing on Day 3. The overall 
mean accuracy across subjects is 3.87%, marginally above the chance level of 3.85%. The corresponding 
weighted accuracy has an overall mean of 0.14, reflecting the increased difficulty of generalizing across 
recording days in a larger vocabulary setting. 
 

 
Fig. 4.10 EEGNet classification accuracy per subject, across all sessions (train on DAY1-2, test on DAY3). 
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Fig. 4.11 EEGNet classification accuracy per class across subjects, across all sessions (train on DAY1-2, test 
on DAY3). 
 

 
 
 

 
Fig. 4.12 EEGNet classification accuracy weighted by letter importance per subject, across all sessions 
(train on DAY1-2, test on DAY3). 
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Fig. 4.13 EEGNet classification accuracy weighted by letter importance per class across subjects, across all 
sessions (train on DAY1-2, test on DAY3). 

 
 

SUBJECT-INDEPENDENT 
 
LOSO-CV (26-class) 
Figure 4.14 presents subject-wise accuracies under LOSO cross-validation. EEGNet achieves an overall 
mean accuracy of 3.85%, indicating performance at chance level when evaluated on unseen subjects. 
 

 
Fig. 4.14 EEGNet classification accuracy per subject, in a Leave-One-Subject-Out manner, across all 
sessions. 
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Fig. 4.15 EEGNet classification accuracy per class across all subjects evaluated in a Leave-One-Subject-Out 
manner, across all sessions. 
 
 
 

 
Fig. 4.16 EEGNet classification accuracy weighted by letter importance per subject, in a Leave-One-
Subject-Out manner, across all sessions. 
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Fig. 4.17 EEGNet classification accuracy weighted by letter importance per class across all subjects 
evaluated in a Leave-One-Subject-Out manner, across all sessions. 
 
 
 
MC-CV (13-class) 
Table 4.1 summarize the Monte Carlo cross-validation results. EEGNet achieves a mean accuracy of 7.65% 
with a mean weighted accuracy of 0.31, showing improved stability when both vocabulary size and inter-
subject variability are reduced. 
 
 
 

Class Accuracy % Weighted Accuracy % 

Alpha 7.23 0.59 

Bravo 7.59 0.11 

Charlie 7.66 0.21 

Delta 7.48 0.31 

Echo 7.62 0.96 

Foxtrot 7.31 0.16 

Golf 6.57 0.13 

Hotel 9.27 0.56 

India 7.02 0.48 

Juliet 9.00 0.013 

Kilo 6.64 0.051 

Lima 7.73 0.31 

Mike 8.42 0.20 

 
Mean 

 
7.65 

 
0.31 

Table 4.1 EEGNet classification performance (unweighted and weighted) per class  (train on DAY1, test on 
Day3) evaluated in MC-CV manner. 
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5 .  E E G  C O N F O R M E R  
 

5 . 1  M O T I V A T I O N  
The EEG Conformer [Song et al., 2022] was employed in this study for inner speech decoding, as it is 
particularly well suited to the temporal characteristics of EEG signals. Although originally developed for 
speech-related tasks, the EEG Conformer transfers effectively to EEG analysis through its combination of 
convolutional layers and attention mechanisms. This architecture enables efficient extraction of short-
term EEG features while simultaneously integrating information across longer temporal windows. As a 
result, it provides a robust framework for modeling inner speech-related neural dynamics and for handling 
variability across subjects. 
 

5 . 2  M E T H O D O L O G Y  
PREPROCESSING 
The EEG signals were preprocessed following the exact procedure described in Section 4.2. In brief, the 
same bandpass and notch filtering, artifact attenuation using ASR, and channel-wise z-score normalization 
were applied.  
 
Importantly, normalization was performed in a training-aware manner, where channel-wise statistics 
were computed exclusively on the training data for each evaluation split and subsequently applied to both 
training and testing sets. This strategy prevents information leakage and ensures a fair evaluation in both 
subject-dependent and subject-independent experimental settings. 
 

NETWORK ARCHITECTURE 
The overall framework is depicted in Fig. 5.1. The architecture comprises three components: a convolution 
module, a self-attention module, and a fully-connected classifier. In the convolution module, taking the 
raw two-dimensional EEG trials as the input, temporal and spatial convolutional layers are applied along 
the time dimension and electrode channel dimensions, respectively. Then, an average pooling layer is 
utilized to suppress noise interference while improving generalization. Secondly, the spatial-temporal 
representation obtained by the convolution module is fed into the self-attention module. The self-
attention module further extracts the long-term temporal features by measuring the global correlations 
between different time positions in the feature maps. Finally, a compact classifier consisting of several 
fully-connected layers is adopted to output the decoding results. 
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Fig. 5.1. The framework of Convolutional Transformer (Conformer), including a convolution module, a 
self-attention module, and a classifier module. Image source: [Song et al., 2022]  
 
The proposed architecture is an end-to-end trainable deep neural network based on the EEG Conformer, 
which integrates convolutional neural networks with Transformer-style self-attention mechanisms. This 
hybrid design enables joint learning of local temporal–spatial EEG features and global temporal 
dependencies, making it particularly suitable for imagined speech decoding from short-duration EEG 
trials. The network configuration employed in this study consists of 40 temporal convolutional filters, a 
Transformer encoder with 4 layers and 8 attention heads, and a dropout probability of 0.5. The model 
operates on EEG trials of 1.5 s duration sampled at 300 Hz, resulting in 450 time samples per trial. 
 

• Convolution Module 
The convolution module follows an EEG-specific design that decomposes two-dimensional convolutions 
into sequential temporal and spatial filtering stages. The first stage applies temporal convolutional filters 
with kernel size (1, 25). These filters act as learnable band-pass filters, capturing short-term oscillatory 
patterns and transient neural dynamics relevant to imagined speech, while preserving the electrode 
channel dimension. Subsequently, a spatial convolution is applied across all EEG channels using kernels of 
size (C, 1), where C denotes the number of electrodes. This layer learns spatial activation patterns and 
inter-channel dependencies, enabling the network to model distributed cortical activity associated with 
speech imagery. 
 
Batch normalization and a non-linear activation function are applied to stabilize training and enhance 
representational capacity. An average pooling operation with kernel size (1, 75) and stride (1, 15) is then 
used to smooth temporal features and reduce the temporal resolution. Given the short trial duration, this 
pooling strategy produces a compact sequence of feature representations while retaining sufficient 
temporal granularity for subsequent processing. Dropout with probability 0.5 is applied to reduce 
overfitting. Finally, the convolutional feature maps are rearranged such that the temporal dimension is 
interpreted as a sequence of tokens, and the convolutional feature dimension forms the token 
embeddings. Each token therefore represents a compact temporal–spatial summary of the EEG signal 
over a short time window. 
 

• Self-Attention Module 
To complement the locally constrained receptive field of the convolution module, a self-attention 
mechanism is employed to capture long-range temporal dependencies across the entire EEG trial. The 
token sequence generated by the convolution module is processed by a Transformer encoder consisting 
of 4 stacked self-attention layers. Each layer employs a multi-head attention strategy with 8 parallel 
attention heads, allowing the model to attend to different temporal relationships and neural dynamics 
simultaneously. This design enhances representational diversity and enables robust modeling of context-
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dependent EEG features. Dropout is applied within the attention layers to improve generalization, 
especially given the limited duration of the EEG trials and the relatively small number of training samples. 
 

• Classification Module 
Following the self-attention module, the learned representations are aggregated and passed to a fully 
connected classification head. The final layer outputs class probabilities corresponding to the imagined 
speech categories. The entire network is trained end-to-end using a cross-entropy loss function. 
 
 
 

5 . 3  R E S U L T S   
 

SUBJECT-DEPENDENT 
A hyperparameter search was conducted for the EEG Conformer model using 5-fold stratified cross-
validation on the training dataset. Three AdamW configurations were evaluated, combining two learning 
rates and light L2 regularization. Stratification ensured balanced class distributions across folds. For each 
configuration, the model was trained within each fold using with cross-entropy loss, a batch size of 64, 
and a maximum of 2000 epochs. Early stopping based on validation loss (patience = 10) was applied. For 
every fold, the validation accuracy and the number of epochs until convergence were recorded. Mean 
validation accuracy, standard deviation, and mean convergence epochs were then computed across folds, 
and the configuration with the highest mean accuracy was selected. Using the best hyperparameter 
setting, a final model was trained on the full training dataset for the mean number of epochs observed 
during cross-validation. Model performance was finally evaluated on an independent held-out test set, 
reporting overall classification accuracy. 
 
 
Within-session (13-class) 
 
DAY1 
 
Figure 5.2 shows that the EEG Conformer attains an overall mean accuracy of 7.38% on Day 1, comparable 
to EEGNet. The corresponding weighted accuracy (Figure 5.4) has an overall mean of 0.29, indicating a 
similar class-dependent performance pattern. 
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Fig. 5.2 EEGConformer classification accuracy per subject for DAY1. 
 
 

 

 
Fig. 5.3 EEGConformer classification accuracy per class across all subjects for DAY1. 
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Fig. 5.4 EEGConformer classification accuracy weighted by letter importance per subject for DAY1. 
 
 

 

 

 

Fig. 5.5 EEGConformer classification accuracy weighted by letter importance per class across subjects for 
DAY1. 
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DAY2 
 
As illustrated in Figure 5.6, performance improves on Day 2, with the overall mean accuracy increasing to 
8.15%. This represents the highest within-session accuracy observed across both models. 
 

 
Fig. 5.6 EEGConformer classification accuracy per subject for DAY2. 
 
 
 

 

 
Fig. 5.7 EEGConformer classification accuracy per class across subjects for DAY2. 
 
 



 

Page | 30 

 
Fig. 5.8 EEGConformer classification accuracy weighted by letter importance per subject for DAY2. 
 
 
 
 
 
 
 

 
Fig. 5.9 EEGConformer classification accuracy weighted by letter importance per class across subjects for 
DAY2. 
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CROSS-SESSION (26-CLASS) 
Figure 5.10 depicts EEG Conformer performance in the cross-session setting. The overall mean accuracy 

reaches 4.15%, exceeding the corresponding EEGNet result. The weighted accuracy also increases to 0.24, 

suggesting improved robustness to session-to-session variability. 

 

Fig. 5.10 EEGConformer classification accuracy per subject, across all sessions (train on DAY1-2, test on 
DAY3). 
 

 

Fig. 5.11 EEGConformer classification accuracy per class across subjects, across all sessions (train on 
DAY1-2, test on DAY3). 
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Fig. 5.12 EEGConformer classification accuracy weighted by letter importance per subject, across all 
sessions (train on DAY1-2, test on DAY3). 
 

 

 

 

Fig. 5.13 EEGConformer classification accuracy weighted by letter importance per class across subjects, 
across all sessions (train on DAY1-2, test on DAY3). 
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LOSO CV (26-CLASS) 
 

 

Fig. 5.14 EEGConformer classification accuracy per subject, in a Leave-One-Subject-Out manner, across 
all sessions. 
 
 
 

 

Fig. 5.15 EEGConformer classification accuracy per class across all subjects evaluated in a Leave-One-
Subject-Out manner, across all sessions. 
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Fig. 5.16 EEGConformer classification accuracy weighted by letter importance per subject, in a Leave-
One-Subject-Out manner, across all sessions. 
 
 
 

 

Fig. 5.17 EEGConformer classification accuracy weighted by letter importance per class across all 
subjects evaluated in a Leave-One-Subject-Out manner, across all sessions. 
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MC-CV (13-CLASS) 
As shown in Table 5.1, the EEG Conformer reaches a mean accuracy of 7.70% with a weighted accuracy 

of 0.29, closely matching EEGNet under the same reduced-vocabulary setting. 

 

Class Accuracy % Weighted Accuracy % 

Alpha 6.6 0.53 

Bravo 7.60 0.11 

Charlie 8 0.22 

Delta 7.8 0.33 

Echo 5.8 0.73 

Foxtrot 10 0.22 

Golf 8 0.16 

Hotel 6.97 0.42 

India 6.21 0.43 

Juliet 8.2 0.01 

Kilo 8.4 0.06 

Lima 8.8 0.35 

Mike 7.6 0.18 

 
Mean 

 
7.7 

 
0.29 

Table 5.1 EEGConformer classification performance (unweighted and weighted) per class  (train on 

DAY1, test on Day3) evaluated in MC-CV manner. 
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6 .  C O N C L U S I O N S  A N D  
F U T U R E  W O R K  
This work presented a structured evaluation of imagined speech decoding from EEG signals, with 
emphasis on understanding how model architecture and evaluation protocol influence performance. Two 
deep learning approaches, EEGNet and EEG Conformer, were systematically assessed under within-
session, cross-session, and subject-independent settings using a multi-session dataset collected within the 
BINGO project.  
 
The results confirm that imagined speech decoding remains a highly challenging task. Performance is 
highest under within-session subject-dependent conditions, degrades when models are required to 
generalize across sessions, and approaches chance level in fully subject-independent evaluations. The EEG 
Conformer consistently matches or slightly outperforms EEGNet, particularly in cross-session and subject-
independent settings, suggesting that attention-based mechanisms offer advantages in modeling 
temporally distributed neural activity. Nevertheless, the absolute performance levels highlight the strong 
impact of inter-subject variability and the limited transferability of learned representations. 
 
Future work will extend in two complementary directions. First, we will further investigate the dataset 
collected within this project, leveraging its multi-session and multi-subject structure to study learning 
effects, session-dependent variability, and individual imagined speech strategies. Such analyses are 
expected to provide deeper insight into the neural dynamics of imagined speech. 
 
Second, future methodological efforts will move toward adaptive and incremental learning paradigms, 
enabling models to evolve as new data are acquired rather than relying on static training. Continual 
learning, subject-aware adaptation, and representation learning strategies that promote invariance 
across subjects and sessions could also be explored.  
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